Quantum toric degeneration of quantum flag and Schubert varieties
- Autores
- Rigal, L.; Zadunaisky Bustillos, Pablo Mauricio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay.
Fil: Rigal, L.. Universite de Paris 13-Nord; Francia
Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
NONCOMMUTATIVE GEOMETRY
DEFORMATIONS
QUANTUM FLAG
QUANTUM SCHUBERT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143907
Ver los metadatos del registro completo
id |
CONICETDig_632ac11f9c689ef46ac219980c24a9b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum toric degeneration of quantum flag and Schubert varietiesRigal, L.Zadunaisky Bustillos, Pablo MauricioNONCOMMUTATIVE GEOMETRYDEFORMATIONSQUANTUM FLAGQUANTUM SCHUBERThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay.Fil: Rigal, L.. Universite de Paris 13-Nord; FranciaFil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143907Rigal, L.; Zadunaisky Bustillos, Pablo Mauricio; Quantum toric degeneration of quantum flag and Schubert varieties ; Springer; Transformation Groups; 26; 3; 9-2020; 1113-11431083-4362CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-020-09615-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00031-020-09615-yinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1902.07675info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:27Zoai:ri.conicet.gov.ar:11336/143907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:27.479CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum toric degeneration of quantum flag and Schubert varieties |
title |
Quantum toric degeneration of quantum flag and Schubert varieties |
spellingShingle |
Quantum toric degeneration of quantum flag and Schubert varieties Rigal, L. NONCOMMUTATIVE GEOMETRY DEFORMATIONS QUANTUM FLAG QUANTUM SCHUBERT |
title_short |
Quantum toric degeneration of quantum flag and Schubert varieties |
title_full |
Quantum toric degeneration of quantum flag and Schubert varieties |
title_fullStr |
Quantum toric degeneration of quantum flag and Schubert varieties |
title_full_unstemmed |
Quantum toric degeneration of quantum flag and Schubert varieties |
title_sort |
Quantum toric degeneration of quantum flag and Schubert varieties |
dc.creator.none.fl_str_mv |
Rigal, L. Zadunaisky Bustillos, Pablo Mauricio |
author |
Rigal, L. |
author_facet |
Rigal, L. Zadunaisky Bustillos, Pablo Mauricio |
author_role |
author |
author2 |
Zadunaisky Bustillos, Pablo Mauricio |
author2_role |
author |
dc.subject.none.fl_str_mv |
NONCOMMUTATIVE GEOMETRY DEFORMATIONS QUANTUM FLAG QUANTUM SCHUBERT |
topic |
NONCOMMUTATIVE GEOMETRY DEFORMATIONS QUANTUM FLAG QUANTUM SCHUBERT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay. Fil: Rigal, L.. Universite de Paris 13-Nord; Francia Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143907 Rigal, L.; Zadunaisky Bustillos, Pablo Mauricio; Quantum toric degeneration of quantum flag and Schubert varieties ; Springer; Transformation Groups; 26; 3; 9-2020; 1113-1143 1083-4362 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143907 |
identifier_str_mv |
Rigal, L.; Zadunaisky Bustillos, Pablo Mauricio; Quantum toric degeneration of quantum flag and Schubert varieties ; Springer; Transformation Groups; 26; 3; 9-2020; 1113-1143 1083-4362 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-020-09615-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00031-020-09615-y info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1902.07675 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269520889118720 |
score |
13.13397 |