Reverse Hölder Property for Strong Weights and General Measures

Autores
Luque, Teresa; Pérez, Carlos; Rela, Ezequiel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.
Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Pérez, Carlos. Universidad del País Vasco; España
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Maximal Functions
Muckenhoupt Weights
Multiparameter Harmonic Analysis
Reverse H&Ouml;Lder Inequality
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55552

id CONICETDig_d197eb97624b1489b0d249830da91982
oai_identifier_str oai:ri.conicet.gov.ar:11336/55552
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reverse Hölder Property for Strong Weights and General MeasuresLuque, TeresaPérez, CarlosRela, EzequielMaximal FunctionsMuckenhoupt WeightsMultiparameter Harmonic AnalysisReverse H&Ouml;Lder Inequalityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; EspañaFil: Pérez, Carlos. Universidad del País Vasco; EspañaFil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55552Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-1821050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-016-9678-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-016-9678-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:36Zoai:ri.conicet.gov.ar:11336/55552instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:36.86CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reverse Hölder Property for Strong Weights and General Measures
title Reverse Hölder Property for Strong Weights and General Measures
spellingShingle Reverse Hölder Property for Strong Weights and General Measures
Luque, Teresa
Maximal Functions
Muckenhoupt Weights
Multiparameter Harmonic Analysis
Reverse H&Ouml;Lder Inequality
title_short Reverse Hölder Property for Strong Weights and General Measures
title_full Reverse Hölder Property for Strong Weights and General Measures
title_fullStr Reverse Hölder Property for Strong Weights and General Measures
title_full_unstemmed Reverse Hölder Property for Strong Weights and General Measures
title_sort Reverse Hölder Property for Strong Weights and General Measures
dc.creator.none.fl_str_mv Luque, Teresa
Pérez, Carlos
Rela, Ezequiel
author Luque, Teresa
author_facet Luque, Teresa
Pérez, Carlos
Rela, Ezequiel
author_role author
author2 Pérez, Carlos
Rela, Ezequiel
author2_role author
author
dc.subject.none.fl_str_mv Maximal Functions
Muckenhoupt Weights
Multiparameter Harmonic Analysis
Reverse H&Ouml;Lder Inequality
topic Maximal Functions
Muckenhoupt Weights
Multiparameter Harmonic Analysis
Reverse H&Ouml;Lder Inequality
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.
Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Pérez, Carlos. Universidad del País Vasco; España
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55552
Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-182
1050-6926
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55552
identifier_str_mv Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-182
1050-6926
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-016-9678-y
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-016-9678-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613428515176448
score 13.070432