Reverse Hölder Property for Strong Weights and General Measures
- Autores
- Luque, Teresa; Pérez, Carlos; Rela, Ezequiel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.
Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Pérez, Carlos. Universidad del País Vasco; España
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Maximal Functions
Muckenhoupt Weights
Multiparameter Harmonic Analysis
Reverse HÖLder Inequality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55552
Ver los metadatos del registro completo
id |
CONICETDig_d197eb97624b1489b0d249830da91982 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55552 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reverse Hölder Property for Strong Weights and General MeasuresLuque, TeresaPérez, CarlosRela, EzequielMaximal FunctionsMuckenhoupt WeightsMultiparameter Harmonic AnalysisReverse HÖLder Inequalityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates.Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; EspañaFil: Pérez, Carlos. Universidad del País Vasco; EspañaFil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55552Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-1821050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-016-9678-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-016-9678-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:36Zoai:ri.conicet.gov.ar:11336/55552instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:36.86CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reverse Hölder Property for Strong Weights and General Measures |
title |
Reverse Hölder Property for Strong Weights and General Measures |
spellingShingle |
Reverse Hölder Property for Strong Weights and General Measures Luque, Teresa Maximal Functions Muckenhoupt Weights Multiparameter Harmonic Analysis Reverse HÖLder Inequality |
title_short |
Reverse Hölder Property for Strong Weights and General Measures |
title_full |
Reverse Hölder Property for Strong Weights and General Measures |
title_fullStr |
Reverse Hölder Property for Strong Weights and General Measures |
title_full_unstemmed |
Reverse Hölder Property for Strong Weights and General Measures |
title_sort |
Reverse Hölder Property for Strong Weights and General Measures |
dc.creator.none.fl_str_mv |
Luque, Teresa Pérez, Carlos Rela, Ezequiel |
author |
Luque, Teresa |
author_facet |
Luque, Teresa Pérez, Carlos Rela, Ezequiel |
author_role |
author |
author2 |
Pérez, Carlos Rela, Ezequiel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Maximal Functions Muckenhoupt Weights Multiparameter Harmonic Analysis Reverse HÖLder Inequality |
topic |
Maximal Functions Muckenhoupt Weights Multiparameter Harmonic Analysis Reverse HÖLder Inequality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates. Fil: Luque, Teresa. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España Fil: Pérez, Carlos. Universidad del País Vasco; España Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We present dimension-free reverse Hölder inequalities for strong Ap∗ weights, 1 ≤ p< ∞. We also provide a proof for the full range of local integrability of A1∗ weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For p= ∞, we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed Ap∗-A∞∗ weighted estimates. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55552 Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-182 1050-6926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55552 |
identifier_str_mv |
Luque, Teresa; Pérez, Carlos; Rela, Ezequiel; Reverse Hölder Property for Strong Weights and General Measures; Springer; The Journal Of Geometric Analysis; 27; 1; 1-2017; 162-182 1050-6926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-016-9678-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-016-9678-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613428515176448 |
score |
13.070432 |