From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators

Autores
Berra, Fabio Martín
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Materia
FRACTIONAL OPERATORS
MAXIMAL OPERATORS
MUCKENHOUPT WEIGHTS
YOUNG FUNCTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215158

id CONICETDig_48908ecc3c616e550a058a8e1b376b00
oai_identifier_str oai:ri.conicet.gov.ar:11336/215158
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From A 1 to A∞ : New Mixed Inequalities for Certain Maximal OperatorsBerra, Fabio MartínFRACTIONAL OPERATORSMAXIMAL OPERATORSMUCKENHOUPT WEIGHTSYOUNG FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaSpringer2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215158Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-270926-2601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11118-021-09903-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:22Zoai:ri.conicet.gov.ar:11336/215158instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:23.285CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
title From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
spellingShingle From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
Berra, Fabio Martín
FRACTIONAL OPERATORS
MAXIMAL OPERATORS
MUCKENHOUPT WEIGHTS
YOUNG FUNCTIONS
title_short From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
title_full From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
title_fullStr From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
title_full_unstemmed From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
title_sort From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
dc.creator.none.fl_str_mv Berra, Fabio Martín
author Berra, Fabio Martín
author_facet Berra, Fabio Martín
author_role author
dc.subject.none.fl_str_mv FRACTIONAL OPERATORS
MAXIMAL OPERATORS
MUCKENHOUPT WEIGHTS
YOUNG FUNCTIONS
topic FRACTIONAL OPERATORS
MAXIMAL OPERATORS
MUCKENHOUPT WEIGHTS
YOUNG FUNCTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
description In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215158
Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-27
0926-2601
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215158
identifier_str_mv Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-27
0926-2601
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11118-021-09903-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269853625352192
score 13.13397