From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators
- Autores
- Berra, Fabio Martín
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina - Materia
-
FRACTIONAL OPERATORS
MAXIMAL OPERATORS
MUCKENHOUPT WEIGHTS
YOUNG FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215158
Ver los metadatos del registro completo
| id |
CONICETDig_48908ecc3c616e550a058a8e1b376b00 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215158 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal OperatorsBerra, Fabio MartínFRACTIONAL OPERATORSMAXIMAL OPERATORSMUCKENHOUPT WEIGHTSYOUNG FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type.Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaSpringer2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215158Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-270926-2601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11118-021-09903-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:27:58Zoai:ri.conicet.gov.ar:11336/215158instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:27:58.806CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| title |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| spellingShingle |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators Berra, Fabio Martín FRACTIONAL OPERATORS MAXIMAL OPERATORS MUCKENHOUPT WEIGHTS YOUNG FUNCTIONS |
| title_short |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| title_full |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| title_fullStr |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| title_full_unstemmed |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| title_sort |
From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators |
| dc.creator.none.fl_str_mv |
Berra, Fabio Martín |
| author |
Berra, Fabio Martín |
| author_facet |
Berra, Fabio Martín |
| author_role |
author |
| dc.subject.none.fl_str_mv |
FRACTIONAL OPERATORS MAXIMAL OPERATORS MUCKENHOUPT WEIGHTS YOUNG FUNCTIONS |
| topic |
FRACTIONAL OPERATORS MAXIMAL OPERATORS MUCKENHOUPT WEIGHTS YOUNG FUNCTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type. Fil: Berra, Fabio Martín. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina |
| description |
In this article we prove mixed inequalities for maximal operators associated to Young functions, which are an improvement of a conjecture established in Berra (Proc. Am. Math. Soc. 147(10), 4259?4273, 2019). Concretely, given r ≥ 1, u ∈ A1, vr∈ A∞ and a Young function Φ with certain properties, we have that inequalityuvr({x∈ℝn:MΦ(fv)(x)v(x)>t})≤C∫ℝnΦ(|f(x)|t)u(x)vr(x)dx holds for every positive t. As an application, we furthermore exhibe and prove mixed inequalities for the generalized fractional maximal operator Mγ,Φ, where 0 < γ < n and Φ is a Young function of LlogL type. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215158 Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-27 0926-2601 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/215158 |
| identifier_str_mv |
Berra, Fabio Martín; From A 1 to A∞ : New Mixed Inequalities for Certain Maximal Operators; Springer; Potential Analysis; 6-2022; 1-27 0926-2601 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11118-021-09903-6 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977936403038208 |
| score |
13.087074 |