Improved Buckley's theorem on locally compact abelian groups
- Autores
- Paternostro, Victoria; Rela, Ezequiel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present sharp quantitative weighted norm inequalities for the Hardy- Littlewood maximal function in the context of locally compact abelian groups, obtaining an improved version of the so-called Buckley's theorem. On the way, we prove a precise reverse Hölder inequality for Muckenhoupt A∞ weights and provide a valid version of the "open property" for Muckenhoupt Ap weights.
Fil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
LOCALLY COMPACT ABELIAN GROUPS
MAXIMAL FUNCTIONS
MUCKENHOUPT WEIGHTS
REVERSE HÖLDER INEQUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117678
Ver los metadatos del registro completo
id |
CONICETDig_1fdc2917f9c7a96d06af5b986d91c402 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117678 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved Buckley's theorem on locally compact abelian groupsPaternostro, VictoriaRela, EzequielLOCALLY COMPACT ABELIAN GROUPSMAXIMAL FUNCTIONSMUCKENHOUPT WEIGHTSREVERSE HÖLDER INEQUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present sharp quantitative weighted norm inequalities for the Hardy- Littlewood maximal function in the context of locally compact abelian groups, obtaining an improved version of the so-called Buckley's theorem. On the way, we prove a precise reverse Hölder inequality for Muckenhoupt A∞ weights and provide a valid version of the "open property" for Muckenhoupt Ap weights.Fil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaPacific Journal Mathematics2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117678Paternostro, Victoria; Rela, Ezequiel; Improved Buckley's theorem on locally compact abelian groups; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 299; 1; 4-2019; 171-1890030-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2019/299-1/p06.xhtmlinfo:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2019.299.171info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.05223info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:33Zoai:ri.conicet.gov.ar:11336/117678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:33.329CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved Buckley's theorem on locally compact abelian groups |
title |
Improved Buckley's theorem on locally compact abelian groups |
spellingShingle |
Improved Buckley's theorem on locally compact abelian groups Paternostro, Victoria LOCALLY COMPACT ABELIAN GROUPS MAXIMAL FUNCTIONS MUCKENHOUPT WEIGHTS REVERSE HÖLDER INEQUALITY |
title_short |
Improved Buckley's theorem on locally compact abelian groups |
title_full |
Improved Buckley's theorem on locally compact abelian groups |
title_fullStr |
Improved Buckley's theorem on locally compact abelian groups |
title_full_unstemmed |
Improved Buckley's theorem on locally compact abelian groups |
title_sort |
Improved Buckley's theorem on locally compact abelian groups |
dc.creator.none.fl_str_mv |
Paternostro, Victoria Rela, Ezequiel |
author |
Paternostro, Victoria |
author_facet |
Paternostro, Victoria Rela, Ezequiel |
author_role |
author |
author2 |
Rela, Ezequiel |
author2_role |
author |
dc.subject.none.fl_str_mv |
LOCALLY COMPACT ABELIAN GROUPS MAXIMAL FUNCTIONS MUCKENHOUPT WEIGHTS REVERSE HÖLDER INEQUALITY |
topic |
LOCALLY COMPACT ABELIAN GROUPS MAXIMAL FUNCTIONS MUCKENHOUPT WEIGHTS REVERSE HÖLDER INEQUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present sharp quantitative weighted norm inequalities for the Hardy- Littlewood maximal function in the context of locally compact abelian groups, obtaining an improved version of the so-called Buckley's theorem. On the way, we prove a precise reverse Hölder inequality for Muckenhoupt A∞ weights and provide a valid version of the "open property" for Muckenhoupt Ap weights. Fil: Paternostro, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We present sharp quantitative weighted norm inequalities for the Hardy- Littlewood maximal function in the context of locally compact abelian groups, obtaining an improved version of the so-called Buckley's theorem. On the way, we prove a precise reverse Hölder inequality for Muckenhoupt A∞ weights and provide a valid version of the "open property" for Muckenhoupt Ap weights. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117678 Paternostro, Victoria; Rela, Ezequiel; Improved Buckley's theorem on locally compact abelian groups; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 299; 1; 4-2019; 171-189 0030-8730 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117678 |
identifier_str_mv |
Paternostro, Victoria; Rela, Ezequiel; Improved Buckley's theorem on locally compact abelian groups; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 299; 1; 4-2019; 171-189 0030-8730 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2019/299-1/p06.xhtml info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2019.299.171 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.05223 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pacific Journal Mathematics |
publisher.none.fl_str_mv |
Pacific Journal Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613810839617536 |
score |
13.070432 |