Powers of distances to lower dimensional sets as Muckenhoupt weights

Autores
Aimar, Hugo Alejandro; Carena, Marilina; Duran, Ricardo Guillermo; Toschi, Marisa
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let (X,d,mu) be an Ahlfors metric measure space. We give sufficient conditions on a closed set Fsubseteq X and on a real number eta in such a way that d(x,F)^beta becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Materia
Ahlfors Spaces
Hardy-Littlewood Maximal Operator
Muckenhoupt Weights
Hausdorff Measure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13169

id CONICETDig_056f822ac36d4220a9b931641f2fe537
oai_identifier_str oai:ri.conicet.gov.ar:11336/13169
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Powers of distances to lower dimensional sets as Muckenhoupt weightsAimar, Hugo AlejandroCarena, MarilinaDuran, Ricardo GuillermoToschi, MarisaAhlfors SpacesHardy-Littlewood Maximal OperatorMuckenhoupt WeightsHausdorff Measurehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (X,d,mu) be an Ahlfors metric measure space. We give sufficient conditions on a closed set Fsubseteq X and on a real number eta in such a way that d(x,F)^beta becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; ArgentinaFil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSpringer2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13169Aimar, Hugo Alejandro; Carena, Marilina; Duran, Ricardo Guillermo; Toschi, Marisa; Powers of distances to lower dimensional sets as Muckenhoupt weights; Springer; Acta Mathematica Hungarica; 143; 1; 2-2014; 119-1370236-5294enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-014-0389-1info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10474-014-0389-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:39Zoai:ri.conicet.gov.ar:11336/13169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:39.398CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Powers of distances to lower dimensional sets as Muckenhoupt weights
title Powers of distances to lower dimensional sets as Muckenhoupt weights
spellingShingle Powers of distances to lower dimensional sets as Muckenhoupt weights
Aimar, Hugo Alejandro
Ahlfors Spaces
Hardy-Littlewood Maximal Operator
Muckenhoupt Weights
Hausdorff Measure
title_short Powers of distances to lower dimensional sets as Muckenhoupt weights
title_full Powers of distances to lower dimensional sets as Muckenhoupt weights
title_fullStr Powers of distances to lower dimensional sets as Muckenhoupt weights
title_full_unstemmed Powers of distances to lower dimensional sets as Muckenhoupt weights
title_sort Powers of distances to lower dimensional sets as Muckenhoupt weights
dc.creator.none.fl_str_mv Aimar, Hugo Alejandro
Carena, Marilina
Duran, Ricardo Guillermo
Toschi, Marisa
author Aimar, Hugo Alejandro
author_facet Aimar, Hugo Alejandro
Carena, Marilina
Duran, Ricardo Guillermo
Toschi, Marisa
author_role author
author2 Carena, Marilina
Duran, Ricardo Guillermo
Toschi, Marisa
author2_role author
author
author
dc.subject.none.fl_str_mv Ahlfors Spaces
Hardy-Littlewood Maximal Operator
Muckenhoupt Weights
Hausdorff Measure
topic Ahlfors Spaces
Hardy-Littlewood Maximal Operator
Muckenhoupt Weights
Hausdorff Measure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let (X,d,mu) be an Ahlfors metric measure space. We give sufficient conditions on a closed set Fsubseteq X and on a real number eta in such a way that d(x,F)^beta becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
description Let (X,d,mu) be an Ahlfors metric measure space. We give sufficient conditions on a closed set Fsubseteq X and on a real number eta in such a way that d(x,F)^beta becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13169
Aimar, Hugo Alejandro; Carena, Marilina; Duran, Ricardo Guillermo; Toschi, Marisa; Powers of distances to lower dimensional sets as Muckenhoupt weights; Springer; Acta Mathematica Hungarica; 143; 1; 2-2014; 119-137
0236-5294
url http://hdl.handle.net/11336/13169
identifier_str_mv Aimar, Hugo Alejandro; Carena, Marilina; Duran, Ricardo Guillermo; Toschi, Marisa; Powers of distances to lower dimensional sets as Muckenhoupt weights; Springer; Acta Mathematica Hungarica; 143; 1; 2-2014; 119-137
0236-5294
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10474-014-0389-1
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10474-014-0389-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268985627770880
score 13.13397