Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data
- Autores
- Terra, Joana; Wolanski, Noemi Irene
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction -up, p > 1 and set in ℝN. We consider a bounded, nonnegative initial datum u0 that behaves like a negative power at infinity. That is, |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N. We prove that, in the supercritical case p > 1+2/α, the solution behaves asymptotically as that of the heat equation (with diffusivity a related to the nonlocal operator) with the same initial datum.
Fil: Terra, Joana. Universidad de Buenos Aires; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
BOUNDARY VALUE PROBLEMS
NONLOCAL DIFFUSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125434
Ver los metadatos del registro completo
id |
CONICETDig_6fdde2b4b4554c844d1ea88e57f496d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125434 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial dataTerra, JoanaWolanski, Noemi IreneBOUNDARY VALUE PROBLEMSNONLOCAL DIFFUSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction -up, p > 1 and set in ℝN. We consider a bounded, nonnegative initial datum u0 that behaves like a negative power at infinity. That is, |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N. We prove that, in the supercritical case p > 1+2/α, the solution behaves asymptotically as that of the heat equation (with diffusivity a related to the nonlocal operator) with the same initial datum.Fil: Terra, Joana. Universidad de Buenos Aires; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125434Terra, Joana; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data; American Mathematical Society; Proceedings of the American Mathematical Society; 139; 4; 4-2011; 1421-14320002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2010-10612-3info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2011-139-04/S0002-9939-2010-10612-3/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:16Zoai:ri.conicet.gov.ar:11336/125434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:16.877CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
title |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
spellingShingle |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data Terra, Joana BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
title_short |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
title_full |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
title_fullStr |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
title_full_unstemmed |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
title_sort |
Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data |
dc.creator.none.fl_str_mv |
Terra, Joana Wolanski, Noemi Irene |
author |
Terra, Joana |
author_facet |
Terra, Joana Wolanski, Noemi Irene |
author_role |
author |
author2 |
Wolanski, Noemi Irene |
author2_role |
author |
dc.subject.none.fl_str_mv |
BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
topic |
BOUNDARY VALUE PROBLEMS NONLOCAL DIFFUSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction -up, p > 1 and set in ℝN. We consider a bounded, nonnegative initial datum u0 that behaves like a negative power at infinity. That is, |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N. We prove that, in the supercritical case p > 1+2/α, the solution behaves asymptotically as that of the heat equation (with diffusivity a related to the nonlocal operator) with the same initial datum. Fil: Terra, Joana. Universidad de Buenos Aires; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we study the asymptotic behavior as time goes to infinity of the solution to a nonlocal diffusion equation with absorption modeled by a powerlike reaction -up, p > 1 and set in ℝN. We consider a bounded, nonnegative initial datum u0 that behaves like a negative power at infinity. That is, |x|αu0(x) → A > 0 as |x| → ∞ with 0 < α ≤ N. We prove that, in the supercritical case p > 1+2/α, the solution behaves asymptotically as that of the heat equation (with diffusivity a related to the nonlocal operator) with the same initial datum. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125434 Terra, Joana; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data; American Mathematical Society; Proceedings of the American Mathematical Society; 139; 4; 4-2011; 1421-1432 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125434 |
identifier_str_mv |
Terra, Joana; Wolanski, Noemi Irene; Asymptotic behavior for a nonlocal diffusion equation with absorption and nonintegrable initial data; American Mathematical Society; Proceedings of the American Mathematical Society; 139; 4; 4-2011; 1421-1432 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2010-10612-3 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2011-139-04/S0002-9939-2010-10612-3/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269686997188608 |
score |
13.13397 |