The canonical contact structure on the space of oriented null geodesics of pseudospheres and products
- Autores
- Godoy, Yamile Alejandra; Salvai, Marcos Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Sk,m be the pseudosphere of signature (k,m). We show that the space ℒ0(Sk,m) of all oriented null geodesics in Sk,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ0(Sk,m) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ0(N) to be manifolds and exhibit a contactomorphism with some standard contact manifold.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
CONTACT MANIFOLD
NULL GEODESIC
SPACE OF GEODESICS
BILLIARDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8933
Ver los metadatos del registro completo
id |
CONICETDig_ce8640cdca618326506b7b945d120c19 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8933 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and productsGodoy, Yamile AlejandraSalvai, Marcos LuisCONTACT MANIFOLDNULL GEODESICSPACE OF GEODESICSBILLIARDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Sk,m be the pseudosphere of signature (k,m). We show that the space ℒ0(Sk,m) of all oriented null geodesics in Sk,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ0(Sk,m) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ0(N) to be manifolds and exhibit a contactomorphism with some standard contact manifold.Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentinade Gruyter2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8933Godoy, Yamile Alejandra; Salvai, Marcos Luis; The canonical contact structure on the space of oriented null geodesics of pseudospheres and products; de Gruyter; Advances In Geometry; 13; 4; 10-2013; 713-7221615-715Xenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2013.13.issue-4/advgeom-2013-0019/advgeom-2013-0019.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/advgeom-2013-0019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:55Zoai:ri.conicet.gov.ar:11336/8933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:55.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
title |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
spellingShingle |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products Godoy, Yamile Alejandra CONTACT MANIFOLD NULL GEODESIC SPACE OF GEODESICS BILLIARDS |
title_short |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
title_full |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
title_fullStr |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
title_full_unstemmed |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
title_sort |
The canonical contact structure on the space of oriented null geodesics of pseudospheres and products |
dc.creator.none.fl_str_mv |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author |
Godoy, Yamile Alejandra |
author_facet |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author_role |
author |
author2 |
Salvai, Marcos Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONTACT MANIFOLD NULL GEODESIC SPACE OF GEODESICS BILLIARDS |
topic |
CONTACT MANIFOLD NULL GEODESIC SPACE OF GEODESICS BILLIARDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Sk,m be the pseudosphere of signature (k,m). We show that the space ℒ0(Sk,m) of all oriented null geodesics in Sk,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ0(Sk,m) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ0(N) to be manifolds and exhibit a contactomorphism with some standard contact manifold. Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina. Universidad Nacional de Córdoba; Argentina |
description |
Let Sk,m be the pseudosphere of signature (k,m). We show that the space ℒ0(Sk,m) of all oriented null geodesics in Sk,m is a manifold, and we describe geometrically its canonical contact distribution in terms of the space of oriented geodesics of certain totally geodesic degenerate hypersurfaces in Sk;m. Further, we find a contactomorphism with some standard contact manifold, namely, the unit tangent bundle of some pseudo-Riemannian manifold. Also, we express the null billiard operator on ℒ0(Sk,m) associated with some simple regions in Sk;m in terms of the geodesic flows of spheres. For the pseudo-Riemannian product N of two complete Riemannian manifolds, we give geometrical conditions on the factors for ℒ0(N) to be manifolds and exhibit a contactomorphism with some standard contact manifold. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8933 Godoy, Yamile Alejandra; Salvai, Marcos Luis; The canonical contact structure on the space of oriented null geodesics of pseudospheres and products; de Gruyter; Advances In Geometry; 13; 4; 10-2013; 713-722 1615-715X |
url |
http://hdl.handle.net/11336/8933 |
identifier_str_mv |
Godoy, Yamile Alejandra; Salvai, Marcos Luis; The canonical contact structure on the space of oriented null geodesics of pseudospheres and products; de Gruyter; Advances In Geometry; 13; 4; 10-2013; 713-722 1615-715X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2013.13.issue-4/advgeom-2013-0019/advgeom-2013-0019.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/advgeom-2013-0019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
de Gruyter |
publisher.none.fl_str_mv |
de Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614438714343424 |
score |
13.070432 |