The magnetic flow on the manifold of oriented geodesics of a three dimensional space form
- Autores
- Godoy, Yamile Alejandra; Salvai, Marcos Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
MANIFOLD OF ORIENTED GEODESICS
HERMITIAN SYMMETRIC SPACE
MAGNETIC FLOW
RULED SURFACE
HOROSPHERICAL DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8984
Ver los metadatos del registro completo
| id |
CONICETDig_f41b922df56148d951eab65711bbbce2 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8984 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space formGodoy, Yamile AlejandraSalvai, Marcos LuisMANIFOLD OF ORIENTED GEODESICSHERMITIAN SYMMETRIC SPACEMAGNETIC FLOWRULED SURFACEHOROSPHERICAL DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M.Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaOsaka University. Departments of Mathematics2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8984Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-7630030-6126enginfo:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.ojm/1380287431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:54:52Zoai:ri.conicet.gov.ar:11336/8984instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:54:52.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| title |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| spellingShingle |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form Godoy, Yamile Alejandra MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
| title_short |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| title_full |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| title_fullStr |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| title_full_unstemmed |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| title_sort |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
| dc.creator.none.fl_str_mv |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
| author |
Godoy, Yamile Alejandra |
| author_facet |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
| author_role |
author |
| author2 |
Salvai, Marcos Luis |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
| topic |
MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M. Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
| description |
Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8984 Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-763 0030-6126 |
| url |
http://hdl.handle.net/11336/8984 |
| identifier_str_mv |
Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-763 0030-6126 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.ojm/1380287431 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Osaka University. Departments of Mathematics |
| publisher.none.fl_str_mv |
Osaka University. Departments of Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427650745794560 |
| score |
13.10058 |