The magnetic flow on the manifold of oriented geodesics of a three dimensional space form
- Autores
- Godoy, Yamile Alejandra; Salvai, Marcos Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
MANIFOLD OF ORIENTED GEODESICS
HERMITIAN SYMMETRIC SPACE
MAGNETIC FLOW
RULED SURFACE
HOROSPHERICAL DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8984
Ver los metadatos del registro completo
id |
CONICETDig_f41b922df56148d951eab65711bbbce2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8984 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space formGodoy, Yamile AlejandraSalvai, Marcos LuisMANIFOLD OF ORIENTED GEODESICSHERMITIAN SYMMETRIC SPACEMAGNETIC FLOWRULED SURFACEHOROSPHERICAL DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M.Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaOsaka University. Departments of Mathematics2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8984Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-7630030-6126enginfo:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.ojm/1380287431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:01Zoai:ri.conicet.gov.ar:11336/8984instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:02.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
title |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
spellingShingle |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form Godoy, Yamile Alejandra MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
title_short |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
title_full |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
title_fullStr |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
title_full_unstemmed |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
title_sort |
The magnetic flow on the manifold of oriented geodesics of a three dimensional space form |
dc.creator.none.fl_str_mv |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author |
Godoy, Yamile Alejandra |
author_facet |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author_role |
author |
author2 |
Salvai, Marcos Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
topic |
MANIFOLD OF ORIENTED GEODESICS HERMITIAN SYMMETRIC SPACE MAGNETIC FLOW RULED SURFACE HOROSPHERICAL DISTRIBUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M. Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
description |
Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,10,1 or −1−1. Let L be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2)(2,2) and Kähler structure J. A smooth curve in L determines a ruled surface in M. We characterize the ruled surfaces of MM associated with the magnetic geodesics of LL, that is, those curves σσ in LL satisfying ∇σ˙σ˙=Jσ˙∇σ˙σ˙=Jσ˙. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of L and M. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8984 Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-763 0030-6126 |
url |
http://hdl.handle.net/11336/8984 |
identifier_str_mv |
Godoy, Yamile Alejandra; Salvai, Marcos Luis; The magnetic flow on the manifold of oriented geodesics of a three dimensional space form; Osaka University. Departments of Mathematics; Osaka Journal of Mathematics; 50; 3; 9-2013; 749-763 0030-6126 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.ojm/1380287431 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Osaka University. Departments of Mathematics |
publisher.none.fl_str_mv |
Osaka University. Departments of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614513261805568 |
score |
13.070432 |