Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
- Autores
- Salvai, Marcos Luis
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
GEODESIC
MANIFOLD OF EMBEDDINGS
REFLECTIVE SUBMANIFOLD
SYMMETRIC SPACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/185836
Ver los metadatos del registro completo
id |
CONICETDig_a2c3fa05a8117cf14e512a0ed26f10f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/185836 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric spaceSalvai, Marcos LuisGEODESICMANIFOLD OF EMBEDDINGSREFLECTIVE SUBMANIFOLDSYMMETRIC SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer Wien2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185836Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-6190026-9255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-014-0642-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-014-0642-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:34Zoai:ri.conicet.gov.ar:11336/185836instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:34.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
title |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
spellingShingle |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space Salvai, Marcos Luis GEODESIC MANIFOLD OF EMBEDDINGS REFLECTIVE SUBMANIFOLD SYMMETRIC SPACE |
title_short |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
title_full |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
title_fullStr |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
title_full_unstemmed |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
title_sort |
Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space |
dc.creator.none.fl_str_mv |
Salvai, Marcos Luis |
author |
Salvai, Marcos Luis |
author_facet |
Salvai, Marcos Luis |
author_role |
author |
dc.subject.none.fl_str_mv |
GEODESIC MANIFOLD OF EMBEDDINGS REFLECTIVE SUBMANIFOLD SYMMETRIC SPACE |
topic |
GEODESIC MANIFOLD OF EMBEDDINGS REFLECTIVE SUBMANIFOLD SYMMETRIC SPACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic. Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/185836 Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-619 0026-9255 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/185836 |
identifier_str_mv |
Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-619 0026-9255 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-014-0642-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-014-0642-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613744769892352 |
score |
13.070432 |