Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space

Autores
Salvai, Marcos Luis
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
GEODESIC
MANIFOLD OF EMBEDDINGS
REFLECTIVE SUBMANIFOLD
SYMMETRIC SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/185836

id CONICETDig_a2c3fa05a8117cf14e512a0ed26f10f6
oai_identifier_str oai:ri.conicet.gov.ar:11336/185836
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric spaceSalvai, Marcos LuisGEODESICMANIFOLD OF EMBEDDINGSREFLECTIVE SUBMANIFOLDSYMMETRIC SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer Wien2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/185836Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-6190026-9255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-014-0642-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-014-0642-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:34Zoai:ri.conicet.gov.ar:11336/185836instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:34.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
title Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
spellingShingle Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
Salvai, Marcos Luis
GEODESIC
MANIFOLD OF EMBEDDINGS
REFLECTIVE SUBMANIFOLD
SYMMETRIC SPACE
title_short Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
title_full Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
title_fullStr Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
title_full_unstemmed Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
title_sort Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space
dc.creator.none.fl_str_mv Salvai, Marcos Luis
author Salvai, Marcos Luis
author_facet Salvai, Marcos Luis
author_role author
dc.subject.none.fl_str_mv GEODESIC
MANIFOLD OF EMBEDDINGS
REFLECTIVE SUBMANIFOLD
SYMMETRIC SPACE
topic GEODESIC
MANIFOLD OF EMBEDDINGS
REFLECTIVE SUBMANIFOLD
SYMMETRIC SPACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description Let M and N be two connected smooth manifolds, where M is compact and oriented and N is Riemannian. Let E be the Fréchet manifold of all embeddings of M in N, endowed with the canonical weak Riemannian metric. Let ∼ be the equivalence relation on E defined by f ∼ g if and only if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The Fréchet manifold S = E/∼ of equivalence classes, which may be thought of as the set of submanifolds of N diffeomorphic to M and is called the nonlinear Grassmannian (or Chow manifold) of N of type M, inherits from E a weak Riemannian structure. We consider the following particular case: N is a compact irreducible symmetric space and M is a reflective submanifold of N (that is, a connected component of the set of fixed points of an involutive isometry of N). Let C be the set of submanifolds of N which are congruent to M. We prove that the natural inclusion of C in S is totally geodesic.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/185836
Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-619
0026-9255
CONICET Digital
CONICET
url http://hdl.handle.net/11336/185836
identifier_str_mv Salvai, Marcos Luis; Some totally geodesic submanifolds of the nonlinear Grassmannian of a compact symmetric space; Springer Wien; Monatshefete Fur Mathematik; 175; 4; 12-2014; 613-619
0026-9255
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00605-014-0642-2
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-014-0642-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Wien
publisher.none.fl_str_mv Springer Wien
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613744769892352
score 13.070432