Calibrated geodesic foliations of hyperbolic space

Autores
Godoy, Yamile Alejandra; Salvai, Marcos Luis
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on L all of whose integral curves are geodesics. Each geodesic foliation of L determines an n-dimensional submanifold of the 2n-dimensional manifold L of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space L has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of L. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of L are space-like.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
GEODESIC FOLIATION
HYPERBOLIC SPACE
SPACE OF GEODESICS
SPLIT SPECIAL LAGRANGIAN CALIBRATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58362

id CONICETDig_e8c0ce01d816bcb49165efb49cdc608d
oai_identifier_str oai:ri.conicet.gov.ar:11336/58362
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Calibrated geodesic foliations of hyperbolic spaceGodoy, Yamile AlejandraSalvai, Marcos LuisGEODESIC FOLIATIONHYPERBOLIC SPACESPACE OF GEODESICSSPLIT SPECIAL LAGRANGIAN CALIBRATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on L all of whose integral curves are geodesics. Each geodesic foliation of L determines an n-dimensional submanifold of the 2n-dimensional manifold L of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space L has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of L. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of L are space-like.Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58362Godoy, Yamile Alejandra; Salvai, Marcos Luis; Calibrated geodesic foliations of hyperbolic space; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 1; 1-2016; 359-3670002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12834info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.6700info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-01/S0002-9939-2015-12834-1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:08Zoai:ri.conicet.gov.ar:11336/58362instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:09.016CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Calibrated geodesic foliations of hyperbolic space
title Calibrated geodesic foliations of hyperbolic space
spellingShingle Calibrated geodesic foliations of hyperbolic space
Godoy, Yamile Alejandra
GEODESIC FOLIATION
HYPERBOLIC SPACE
SPACE OF GEODESICS
SPLIT SPECIAL LAGRANGIAN CALIBRATION
title_short Calibrated geodesic foliations of hyperbolic space
title_full Calibrated geodesic foliations of hyperbolic space
title_fullStr Calibrated geodesic foliations of hyperbolic space
title_full_unstemmed Calibrated geodesic foliations of hyperbolic space
title_sort Calibrated geodesic foliations of hyperbolic space
dc.creator.none.fl_str_mv Godoy, Yamile Alejandra
Salvai, Marcos Luis
author Godoy, Yamile Alejandra
author_facet Godoy, Yamile Alejandra
Salvai, Marcos Luis
author_role author
author2 Salvai, Marcos Luis
author2_role author
dc.subject.none.fl_str_mv GEODESIC FOLIATION
HYPERBOLIC SPACE
SPACE OF GEODESICS
SPLIT SPECIAL LAGRANGIAN CALIBRATION
topic GEODESIC FOLIATION
HYPERBOLIC SPACE
SPACE OF GEODESICS
SPLIT SPECIAL LAGRANGIAN CALIBRATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on L all of whose integral curves are geodesics. Each geodesic foliation of L determines an n-dimensional submanifold of the 2n-dimensional manifold L of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space L has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of L. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of L are space-like.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on L all of whose integral curves are geodesics. Each geodesic foliation of L determines an n-dimensional submanifold of the 2n-dimensional manifold L of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space L has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of L. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of L are space-like.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58362
Godoy, Yamile Alejandra; Salvai, Marcos Luis; Calibrated geodesic foliations of hyperbolic space; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 1; 1-2016; 359-367
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58362
identifier_str_mv Godoy, Yamile Alejandra; Salvai, Marcos Luis; Calibrated geodesic foliations of hyperbolic space; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 1; 1-2016; 359-367
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12834
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1411.6700
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-01/S0002-9939-2015-12834-1/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613757306667008
score 13.070432