Canonical sphere bundles of the Grassmann manifold
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernán; Larotonda, Gabriel Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. - Fuente
- Geometriae Dedicata. Feb. 2019; 203(1): 179-203
https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst - Materia
-
Finsler metric
Flag manifold
Geodesic
Projection
Riemannian metric
Sphere bundle - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1806
Ver los metadatos del registro completo
id |
RIUNGS_e5100c1be4c23b6a18ba01672c60279d |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1806 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Canonical sphere bundles of the Grassmann manifoldAndruchow, EstebanChiumiento, Eduardo HernánLarotonda, Gabriel AndrésFinsler metricFlag manifoldGeodesicProjectionRiemannian metricSphere bundleFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.Springer2024-12-23T13:21:47Z2024-12-23T13:21:47Z2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203.0046-5755http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806Geometriae Dedicata. Feb. 2019; 203(1): 179-203https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirstreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s10711-019-00431-7info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:42:59Zoai:repositorio.ungs.edu.ar:UNGS/1806instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:00.219Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Canonical sphere bundles of the Grassmann manifold |
title |
Canonical sphere bundles of the Grassmann manifold |
spellingShingle |
Canonical sphere bundles of the Grassmann manifold Andruchow, Esteban Finsler metric Flag manifold Geodesic Projection Riemannian metric Sphere bundle |
title_short |
Canonical sphere bundles of the Grassmann manifold |
title_full |
Canonical sphere bundles of the Grassmann manifold |
title_fullStr |
Canonical sphere bundles of the Grassmann manifold |
title_full_unstemmed |
Canonical sphere bundles of the Grassmann manifold |
title_sort |
Canonical sphere bundles of the Grassmann manifold |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernán Larotonda, Gabriel Andrés |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernán Larotonda, Gabriel Andrés |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernán Larotonda, Gabriel Andrés |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Finsler metric Flag manifold Geodesic Projection Riemannian metric Sphere bundle |
topic |
Finsler metric Flag manifold Geodesic Projection Riemannian metric Sphere bundle |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2024-12-23T13:21:47Z 2024-12-23T13:21:47Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203. 0046-5755 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806 |
identifier_str_mv |
Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203. 0046-5755 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1007/s10711-019-00431-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Geometriae Dedicata. Feb. 2019; 203(1): 179-203 https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346537721528320 |
score |
12.623145 |