Canonical sphere bundles of the Grassmann manifold

Autores
Andruchow, Esteban; Chiumiento, Eduardo Hernán; Larotonda, Gabriel Andrés
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.
Fuente
Geometriae Dedicata. Feb. 2019; 203(1): 179-203
https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst
Materia
Finsler metric
Flag manifold
Geodesic
Projection
Riemannian metric
Sphere bundle
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1806

id RIUNGS_e5100c1be4c23b6a18ba01672c60279d
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1806
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Canonical sphere bundles of the Grassmann manifoldAndruchow, EstebanChiumiento, Eduardo HernánLarotonda, Gabriel AndrésFinsler metricFlag manifoldGeodesicProjectionRiemannian metricSphere bundleFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.Springer2024-12-23T13:21:47Z2024-12-23T13:21:47Z2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203.0046-5755http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806Geometriae Dedicata. Feb. 2019; 203(1): 179-203https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirstreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s10711-019-00431-7info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:42:59Zoai:repositorio.ungs.edu.ar:UNGS/1806instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:00.219Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Canonical sphere bundles of the Grassmann manifold
title Canonical sphere bundles of the Grassmann manifold
spellingShingle Canonical sphere bundles of the Grassmann manifold
Andruchow, Esteban
Finsler metric
Flag manifold
Geodesic
Projection
Riemannian metric
Sphere bundle
title_short Canonical sphere bundles of the Grassmann manifold
title_full Canonical sphere bundles of the Grassmann manifold
title_fullStr Canonical sphere bundles of the Grassmann manifold
title_full_unstemmed Canonical sphere bundles of the Grassmann manifold
title_sort Canonical sphere bundles of the Grassmann manifold
dc.creator.none.fl_str_mv Andruchow, Esteban
Chiumiento, Eduardo Hernán
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Chiumiento, Eduardo Hernán
Larotonda, Gabriel Andrés
author_role author
author2 Chiumiento, Eduardo Hernán
Larotonda, Gabriel Andrés
author2_role author
author
dc.subject.none.fl_str_mv Finsler metric
Flag manifold
Geodesic
Projection
Riemannian metric
Sphere bundle
topic Finsler metric
Flag manifold
Geodesic
Projection
Riemannian metric
Sphere bundle
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Larotonda, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)?P(H)×H:Pf=f,?f?=1}. We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert–Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi–Civita connection of this metric and establish a Hopf–Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019
2024-12-23T13:21:47Z
2024-12-23T13:21:47Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203.
0046-5755
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806
identifier_str_mv Andruchow, E., Chiumiento, E. y Larotonda, G. (2019). Canonical sphere bundles of the Grassmann manifold. Geometriae Dedicata, 203(1), 179-203.
0046-5755
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1806
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1007/s10711-019-00431-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Geometriae Dedicata. Feb. 2019; 203(1): 179-203
https://link.springer.com/journal/10711/articles?link_id=G_Geometriae_1972-1999_Springer&filter-by-volume=203&sortBy=newestFirst
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1842346537721528320
score 12.623145