Metric geodesics of isometries in a Hilbert space and the extension problem

Autores
Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
ISOMETRY
HOMOGENEUS SPACES
GEODESICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100038

id CONICETDig_94c5e36f5e7c544b873e1e231a8a309b
oai_identifier_str oai:ri.conicet.gov.ar:11336/100038
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Metric geodesics of isometries in a Hilbert space and the extension problemAndruchow, EstebanRecht, LázaroVarela, AlejandroISOMETRYHOMOGENEUS SPACESGEODESICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaAmerican Mathematical Society2007-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100038Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro; Metric geodesics of isometries in a Hilbert space and the extension problem; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 8; 8-2007; 2527-25370002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-08/S0002-9939-07-08753-9/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-08753-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:47Zoai:ri.conicet.gov.ar:11336/100038instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:47.801CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Metric geodesics of isometries in a Hilbert space and the extension problem
title Metric geodesics of isometries in a Hilbert space and the extension problem
spellingShingle Metric geodesics of isometries in a Hilbert space and the extension problem
Andruchow, Esteban
ISOMETRY
HOMOGENEUS SPACES
GEODESICS
title_short Metric geodesics of isometries in a Hilbert space and the extension problem
title_full Metric geodesics of isometries in a Hilbert space and the extension problem
title_fullStr Metric geodesics of isometries in a Hilbert space and the extension problem
title_full_unstemmed Metric geodesics of isometries in a Hilbert space and the extension problem
title_sort Metric geodesics of isometries in a Hilbert space and the extension problem
dc.creator.none.fl_str_mv Andruchow, Esteban
Recht, Lázaro
Varela, Alejandro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Recht, Lázaro
Varela, Alejandro
author_role author
author2 Recht, Lázaro
Varela, Alejandro
author2_role author
author
dc.subject.none.fl_str_mv ISOMETRY
HOMOGENEUS SPACES
GEODESICS
topic ISOMETRY
HOMOGENEUS SPACES
GEODESICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Recht, Lázaro. Universidad Simón Bolívar; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to π, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.
publishDate 2007
dc.date.none.fl_str_mv 2007-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100038
Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro; Metric geodesics of isometries in a Hilbert space and the extension problem; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 8; 8-2007; 2527-2537
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100038
identifier_str_mv Andruchow, Esteban; Recht, Lázaro; Varela, Alejandro; Metric geodesics of isometries in a Hilbert space and the extension problem; American Mathematical Society; Proceedings of the American Mathematical Society; 135; 8; 8-2007; 2527-2537
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2007-135-08/S0002-9939-07-08753-9/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-08753-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268817117413376
score 13.13397