A basic convergence result for conforming adaptive finite element methods
- Autores
- Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy.
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Siebert, Kunibert G.. Universität Augsburg;
Fil: Veeser, Andreas. Università degli Studi di Milano; Italia - Materia
-
Adaptivity
Conforming Finite Elements
Adaptivity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84102
Ver los metadatos del registro completo
id |
CONICETDig_c326d8dadbd6ea2082c17468744af2ed |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84102 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A basic convergence result for conforming adaptive finite element methodsMorin, PedroSiebert, Kunibert G.Veeser, AndreasAdaptivityConforming Finite ElementsAdaptivityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy.Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Siebert, Kunibert G.. Universität Augsburg;Fil: Veeser, Andreas. Università degli Studi di Milano; ItaliaWorld Scientific2008-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84102Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas; A basic convergence result for conforming adaptive finite element methods; World Scientific; Mathematical Models And Methods In Applied Sciences; 18; 5; 5-2008; 707-7370218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202508002838info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:15Zoai:ri.conicet.gov.ar:11336/84102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:15.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A basic convergence result for conforming adaptive finite element methods |
title |
A basic convergence result for conforming adaptive finite element methods |
spellingShingle |
A basic convergence result for conforming adaptive finite element methods Morin, Pedro Adaptivity Conforming Finite Elements Adaptivity |
title_short |
A basic convergence result for conforming adaptive finite element methods |
title_full |
A basic convergence result for conforming adaptive finite element methods |
title_fullStr |
A basic convergence result for conforming adaptive finite element methods |
title_full_unstemmed |
A basic convergence result for conforming adaptive finite element methods |
title_sort |
A basic convergence result for conforming adaptive finite element methods |
dc.creator.none.fl_str_mv |
Morin, Pedro Siebert, Kunibert G. Veeser, Andreas |
author |
Morin, Pedro |
author_facet |
Morin, Pedro Siebert, Kunibert G. Veeser, Andreas |
author_role |
author |
author2 |
Siebert, Kunibert G. Veeser, Andreas |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Adaptivity Conforming Finite Elements Adaptivity |
topic |
Adaptivity Conforming Finite Elements Adaptivity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy. Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Siebert, Kunibert G.. Universität Augsburg; Fil: Veeser, Andreas. Università degli Studi di Milano; Italia |
description |
We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the infsup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dörfler's strategy, but also by the maximum strategy and the equidistribution strategy. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84102 Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas; A basic convergence result for conforming adaptive finite element methods; World Scientific; Mathematical Models And Methods In Applied Sciences; 18; 5; 5-2008; 707-737 0218-2025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84102 |
identifier_str_mv |
Morin, Pedro; Siebert, Kunibert G.; Veeser, Andreas; A basic convergence result for conforming adaptive finite element methods; World Scientific; Mathematical Models And Methods In Applied Sciences; 18; 5; 5-2008; 707-737 0218-2025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202508002838 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613421453017088 |
score |
13.070432 |