Approximation classes for adaptive higher order finite element approximation

Autores
Gaspoz, Fernando Daniel; Morin, Pedro
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.
Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; Alemania
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Materia
Adaptive Finite Elements
Besov Spaces
Convergence Rates
Approximation Classes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13319

id CONICETDig_5e91c921e8b11fb1feda32f040772ad1
oai_identifier_str oai:ri.conicet.gov.ar:11336/13319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Approximation classes for adaptive higher order finite element approximationGaspoz, Fernando DanielMorin, PedroAdaptive Finite ElementsBesov SpacesConvergence RatesApproximation Classeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; AlemaniaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaAmer Mathematical Soc2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13319Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-21600025-5718enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2013-02777-9/S0025-5718-2013-02777-9.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:07Zoai:ri.conicet.gov.ar:11336/13319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:07.75CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Approximation classes for adaptive higher order finite element approximation
title Approximation classes for adaptive higher order finite element approximation
spellingShingle Approximation classes for adaptive higher order finite element approximation
Gaspoz, Fernando Daniel
Adaptive Finite Elements
Besov Spaces
Convergence Rates
Approximation Classes
title_short Approximation classes for adaptive higher order finite element approximation
title_full Approximation classes for adaptive higher order finite element approximation
title_fullStr Approximation classes for adaptive higher order finite element approximation
title_full_unstemmed Approximation classes for adaptive higher order finite element approximation
title_sort Approximation classes for adaptive higher order finite element approximation
dc.creator.none.fl_str_mv Gaspoz, Fernando Daniel
Morin, Pedro
author Gaspoz, Fernando Daniel
author_facet Gaspoz, Fernando Daniel
Morin, Pedro
author_role author
author2 Morin, Pedro
author2_role author
dc.subject.none.fl_str_mv Adaptive Finite Elements
Besov Spaces
Convergence Rates
Approximation Classes
topic Adaptive Finite Elements
Besov Spaces
Convergence Rates
Approximation Classes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.
Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; Alemania
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
description We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13319
Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-2160
0025-5718
url http://hdl.handle.net/11336/13319
identifier_str_mv Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-2160
0025-5718
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2013-02777-9/S0025-5718-2013-02777-9.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Mathematical Soc
publisher.none.fl_str_mv Amer Mathematical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269266350440448
score 13.13397