Approximation classes for adaptive higher order finite element approximation
- Autores
- Gaspoz, Fernando Daniel; Morin, Pedro
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.
Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; Alemania
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina - Materia
-
Adaptive Finite Elements
Besov Spaces
Convergence Rates
Approximation Classes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13319
Ver los metadatos del registro completo
id |
CONICETDig_5e91c921e8b11fb1feda32f040772ad1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13319 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximation classes for adaptive higher order finite element approximationGaspoz, Fernando DanielMorin, PedroAdaptive Finite ElementsBesov SpacesConvergence RatesApproximation Classeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; AlemaniaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaAmer Mathematical Soc2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13319Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-21600025-5718enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2013-02777-9/S0025-5718-2013-02777-9.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:07Zoai:ri.conicet.gov.ar:11336/13319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:07.75CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximation classes for adaptive higher order finite element approximation |
title |
Approximation classes for adaptive higher order finite element approximation |
spellingShingle |
Approximation classes for adaptive higher order finite element approximation Gaspoz, Fernando Daniel Adaptive Finite Elements Besov Spaces Convergence Rates Approximation Classes |
title_short |
Approximation classes for adaptive higher order finite element approximation |
title_full |
Approximation classes for adaptive higher order finite element approximation |
title_fullStr |
Approximation classes for adaptive higher order finite element approximation |
title_full_unstemmed |
Approximation classes for adaptive higher order finite element approximation |
title_sort |
Approximation classes for adaptive higher order finite element approximation |
dc.creator.none.fl_str_mv |
Gaspoz, Fernando Daniel Morin, Pedro |
author |
Gaspoz, Fernando Daniel |
author_facet |
Gaspoz, Fernando Daniel Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adaptive Finite Elements Besov Spaces Convergence Rates Approximation Classes |
topic |
Adaptive Finite Elements Besov Spaces Convergence Rates Approximation Classes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al. Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universität Stuttgart; Alemania Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina |
description |
We provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13319 Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-2160 0025-5718 |
url |
http://hdl.handle.net/11336/13319 |
identifier_str_mv |
Gaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-2160 0025-5718 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2013-02777-9/S0025-5718-2013-02777-9.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Amer Mathematical Soc |
publisher.none.fl_str_mv |
Amer Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269266350440448 |
score |
13.13397 |