Adaptive control of local errors for elliptic problems using weighted Sobolev norms

Autores
Garau, Eduardo Mario; Morin, Pedro
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Materia
A Posteriori Error Estimates
Elliptic Problems
Finite Elements
Local Estimates
Point Sources
Weighted Sobolev Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66105

id CONICETDig_cc5e0d34c2f3e4c747705860daac5a88
oai_identifier_str oai:ri.conicet.gov.ar:11336/66105
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Adaptive control of local errors for elliptic problems using weighted Sobolev normsGarau, Eduardo MarioMorin, PedroA Posteriori Error EstimatesElliptic ProblemsFinite ElementsLocal EstimatesPoint SourcesWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaJohn Wiley & Sons Inc2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66105Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-12820749-159XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/num.22142info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:40Zoai:ri.conicet.gov.ar:11336/66105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:41.028CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Adaptive control of local errors for elliptic problems using weighted Sobolev norms
title Adaptive control of local errors for elliptic problems using weighted Sobolev norms
spellingShingle Adaptive control of local errors for elliptic problems using weighted Sobolev norms
Garau, Eduardo Mario
A Posteriori Error Estimates
Elliptic Problems
Finite Elements
Local Estimates
Point Sources
Weighted Sobolev Spaces
title_short Adaptive control of local errors for elliptic problems using weighted Sobolev norms
title_full Adaptive control of local errors for elliptic problems using weighted Sobolev norms
title_fullStr Adaptive control of local errors for elliptic problems using weighted Sobolev norms
title_full_unstemmed Adaptive control of local errors for elliptic problems using weighted Sobolev norms
title_sort Adaptive control of local errors for elliptic problems using weighted Sobolev norms
dc.creator.none.fl_str_mv Garau, Eduardo Mario
Morin, Pedro
author Garau, Eduardo Mario
author_facet Garau, Eduardo Mario
Morin, Pedro
author_role author
author2 Morin, Pedro
author2_role author
dc.subject.none.fl_str_mv A Posteriori Error Estimates
Elliptic Problems
Finite Elements
Local Estimates
Point Sources
Weighted Sobolev Spaces
topic A Posteriori Error Estimates
Elliptic Problems
Finite Elements
Local Estimates
Point Sources
Weighted Sobolev Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
description We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66105
Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-1282
0749-159X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66105
identifier_str_mv Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-1282
0749-159X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/num.22142
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22142
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613561577373696
score 13.070432