Adaptive control of local errors for elliptic problems using weighted Sobolev norms
- Autores
- Garau, Eduardo Mario; Morin, Pedro
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina - Materia
-
A Posteriori Error Estimates
Elliptic Problems
Finite Elements
Local Estimates
Point Sources
Weighted Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66105
Ver los metadatos del registro completo
id |
CONICETDig_cc5e0d34c2f3e4c747705860daac5a88 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66105 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive control of local errors for elliptic problems using weighted Sobolev normsGarau, Eduardo MarioMorin, PedroA Posteriori Error EstimatesElliptic ProblemsFinite ElementsLocal EstimatesPoint SourcesWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017.Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaJohn Wiley & Sons Inc2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66105Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-12820749-159XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/num.22142info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:40Zoai:ri.conicet.gov.ar:11336/66105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:41.028CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
title |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
spellingShingle |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms Garau, Eduardo Mario A Posteriori Error Estimates Elliptic Problems Finite Elements Local Estimates Point Sources Weighted Sobolev Spaces |
title_short |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
title_full |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
title_fullStr |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
title_full_unstemmed |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
title_sort |
Adaptive control of local errors for elliptic problems using weighted Sobolev norms |
dc.creator.none.fl_str_mv |
Garau, Eduardo Mario Morin, Pedro |
author |
Garau, Eduardo Mario |
author_facet |
Garau, Eduardo Mario Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
A Posteriori Error Estimates Elliptic Problems Finite Elements Local Estimates Point Sources Weighted Sobolev Spaces |
topic |
A Posteriori Error Estimates Elliptic Problems Finite Elements Local Estimates Point Sources Weighted Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017. Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina |
description |
We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66105 Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-1282 0749-159X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66105 |
identifier_str_mv |
Garau, Eduardo Mario; Morin, Pedro; Adaptive control of local errors for elliptic problems using weighted Sobolev norms; John Wiley & Sons Inc; Numerical Methods For Partial Differential Equations; 33; 4; 7-2017; 1266-1282 0749-159X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/num.22142 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22142 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613561577373696 |
score |
13.070432 |