Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
- Autores
- Ojea, Ignacio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.
Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
A PRIORI ERROR ESTIMATES
FINITE ELEMENTS
WEIGHTED SOBOLEV SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/164931
Ver los metadatos del registro completo
id |
CONICETDig_842fe178f97201dabcb4dae509d2068a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/164931 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sourcesOjea, IgnacioA PRIORI ERROR ESTIMATESFINITE ELEMENTSWEIGHTED SOBOLEV SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaEDP Sciences2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/164931Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S9070764-583X2804-7214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020065info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an190167/m2an190167.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:59Zoai:ri.conicet.gov.ar:11336/164931instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:01.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
title |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
spellingShingle |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources Ojea, Ignacio A PRIORI ERROR ESTIMATES FINITE ELEMENTS WEIGHTED SOBOLEV SPACES |
title_short |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
title_full |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
title_fullStr |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
title_full_unstemmed |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
title_sort |
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources |
dc.creator.none.fl_str_mv |
Ojea, Ignacio |
author |
Ojea, Ignacio |
author_facet |
Ojea, Ignacio |
author_role |
author |
dc.subject.none.fl_str_mv |
A PRIORI ERROR ESTIMATES FINITE ELEMENTS WEIGHTED SOBOLEV SPACES |
topic |
A PRIORI ERROR ESTIMATES FINITE ELEMENTS WEIGHTED SOBOLEV SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations. Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/164931 Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907 0764-583X 2804-7214 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/164931 |
identifier_str_mv |
Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907 0764-583X 2804-7214 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020065 info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an190167/m2an190167.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269260206833664 |
score |
13.13397 |