A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
- Autores
- Agnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.
Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Elliptic Problems
Singular Source Term
A Posteriori Error Estimates
Weighted Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13168
Ver los metadatos del registro completo
id |
CONICETDig_146ed6aa8fa112ca50e82f3f40da0084 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13168 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spacesAgnelli, Juan PabloGarau, Eduardo MarioMorin, PedroElliptic ProblemsSingular Source TermA Posteriori Error EstimatesWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaEdp Sciences2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13168Agnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro; A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces; Edp Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 6; 2-2014; 1557-15810764-583X1290-3841enginfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2014010info:eu-repo/semantics/altIdentifier/url/http://www.esaim-m2an.org/articles/m2an/abs/2014/06/m2an140010/m2an140010.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:13Zoai:ri.conicet.gov.ar:11336/13168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:13.47CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
title |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
spellingShingle |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces Agnelli, Juan Pablo Elliptic Problems Singular Source Term A Posteriori Error Estimates Weighted Sobolev Spaces |
title_short |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
title_full |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
title_fullStr |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
title_full_unstemmed |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
title_sort |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
dc.creator.none.fl_str_mv |
Agnelli, Juan Pablo Garau, Eduardo Mario Morin, Pedro |
author |
Agnelli, Juan Pablo |
author_facet |
Agnelli, Juan Pablo Garau, Eduardo Mario Morin, Pedro |
author_role |
author |
author2 |
Garau, Eduardo Mario Morin, Pedro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Elliptic Problems Singular Source Term A Posteriori Error Estimates Weighted Sobolev Spaces |
topic |
Elliptic Problems Singular Source Term A Posteriori Error Estimates Weighted Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices. Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Cl´ement or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13168 Agnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro; A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces; Edp Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 6; 2-2014; 1557-1581 0764-583X 1290-3841 |
url |
http://hdl.handle.net/11336/13168 |
identifier_str_mv |
Agnelli, Juan Pablo; Garau, Eduardo Mario; Morin, Pedro; A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces; Edp Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 6; 2-2014; 1557-1581 0764-583X 1290-3841 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2014010 info:eu-repo/semantics/altIdentifier/url/http://www.esaim-m2an.org/articles/m2an/abs/2014/06/m2an140010/m2an140010.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Edp Sciences |
publisher.none.fl_str_mv |
Edp Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082704743858176 |
score |
13.22299 |