On the existence of bounded solutions for a nonlinear elliptic system
- Autores
- Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work deals with the system (−Δ)mu = a(x) vp, (−Δ)mv = b(x) uq with Dirichlet boundary condition in a domain Ω⊂Rn , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper.
Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sanmartino, Marcela. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Toschi, Marisa. Universidad Nacional del Litoral; Argentina - Materia
-
Elliptic Systems
A Priori Estimates
Critical Exponents
Weighted Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14930
Ver los metadatos del registro completo
id |
CONICETDig_2fb59800487aa29645ba86dfffa44af6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the existence of bounded solutions for a nonlinear elliptic systemDuran, Ricardo GuillermoSanmartino, MarcelaToschi, MarisaElliptic SystemsA Priori EstimatesCritical ExponentsWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This work deals with the system (−Δ)mu = a(x) vp, (−Δ)mv = b(x) uq with Dirichlet boundary condition in a domain Ω⊂Rn , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper.Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sanmartino, Marcela. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Toschi, Marisa. Universidad Nacional del Litoral; ArgentinaSpringer Heidelberg2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14930Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; On the existence of bounded solutions for a nonlinear elliptic system; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 191; 4; 4-2011; 771-7820373-3114enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10231-011-0205-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-011-0205-2info:eu-repo/semantics/altIdentifier/url/https://mate.dm.uba.ar/~rduran/papers/dst3.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:28Zoai:ri.conicet.gov.ar:11336/14930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:28.37CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the existence of bounded solutions for a nonlinear elliptic system |
title |
On the existence of bounded solutions for a nonlinear elliptic system |
spellingShingle |
On the existence of bounded solutions for a nonlinear elliptic system Duran, Ricardo Guillermo Elliptic Systems A Priori Estimates Critical Exponents Weighted Sobolev Spaces |
title_short |
On the existence of bounded solutions for a nonlinear elliptic system |
title_full |
On the existence of bounded solutions for a nonlinear elliptic system |
title_fullStr |
On the existence of bounded solutions for a nonlinear elliptic system |
title_full_unstemmed |
On the existence of bounded solutions for a nonlinear elliptic system |
title_sort |
On the existence of bounded solutions for a nonlinear elliptic system |
dc.creator.none.fl_str_mv |
Duran, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author |
Duran, Ricardo Guillermo |
author_facet |
Duran, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author_role |
author |
author2 |
Sanmartino, Marcela Toschi, Marisa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Elliptic Systems A Priori Estimates Critical Exponents Weighted Sobolev Spaces |
topic |
Elliptic Systems A Priori Estimates Critical Exponents Weighted Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work deals with the system (−Δ)mu = a(x) vp, (−Δ)mv = b(x) uq with Dirichlet boundary condition in a domain Ω⊂Rn , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper. Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sanmartino, Marcela. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Toschi, Marisa. Universidad Nacional del Litoral; Argentina |
description |
This work deals with the system (−Δ)mu = a(x) vp, (−Δ)mv = b(x) uq with Dirichlet boundary condition in a domain Ω⊂Rn , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14930 Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; On the existence of bounded solutions for a nonlinear elliptic system; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 191; 4; 4-2011; 771-782 0373-3114 |
url |
http://hdl.handle.net/11336/14930 |
identifier_str_mv |
Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; On the existence of bounded solutions for a nonlinear elliptic system; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 191; 4; 4-2011; 771-782 0373-3114 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10231-011-0205-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-011-0205-2 info:eu-repo/semantics/altIdentifier/url/https://mate.dm.uba.ar/~rduran/papers/dst3.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614395088338944 |
score |
13.070432 |