Weighted a priori estimates for elliptic equations
- Autores
- Cejas, María Eugenia; Duran, Ricardo Guillermo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class.
Fil: Cejas, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ELLIPTIC EQUATIONS
WEIGHTED A PRIORI ESTIMATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84701
Ver los metadatos del registro completo
id |
CONICETDig_d8e6a7618819da9fe6e214447d8ab898 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted a priori estimates for elliptic equationsCejas, María EugeniaDuran, Ricardo GuillermoELLIPTIC EQUATIONSWEIGHTED A PRIORI ESTIMATEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class.Fil: Cejas, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaPolish Academy of Sciences. Institute of Mathematics2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84701Cejas, María Eugenia; Duran, Ricardo Guillermo; Weighted a priori estimates for elliptic equations; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 243; 1; 6-2018; 13-240039-3223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm8704-6-2017info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8704-6-2017info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.00879info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:52Zoai:ri.conicet.gov.ar:11336/84701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:52.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates for elliptic equations |
title |
Weighted a priori estimates for elliptic equations |
spellingShingle |
Weighted a priori estimates for elliptic equations Cejas, María Eugenia ELLIPTIC EQUATIONS WEIGHTED A PRIORI ESTIMATES |
title_short |
Weighted a priori estimates for elliptic equations |
title_full |
Weighted a priori estimates for elliptic equations |
title_fullStr |
Weighted a priori estimates for elliptic equations |
title_full_unstemmed |
Weighted a priori estimates for elliptic equations |
title_sort |
Weighted a priori estimates for elliptic equations |
dc.creator.none.fl_str_mv |
Cejas, María Eugenia Duran, Ricardo Guillermo |
author |
Cejas, María Eugenia |
author_facet |
Cejas, María Eugenia Duran, Ricardo Guillermo |
author_role |
author |
author2 |
Duran, Ricardo Guillermo |
author2_role |
author |
dc.subject.none.fl_str_mv |
ELLIPTIC EQUATIONS WEIGHTED A PRIORI ESTIMATES |
topic |
ELLIPTIC EQUATIONS WEIGHTED A PRIORI ESTIMATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class. Fil: Cejas, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We give a simpler proof of the a priori estimates obtained by Durán et al. (2008, 2010) for solutions of elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the continuity of singular integral operators in weighted norms. In the case of singular integral operators it is known that the Ap condition is also necessary for the continuity. We do not know whether this is also true for the a priori estimates in bounded domains but we are able to prove a weaker result when the operator is the Laplacian or a power of it. We prove that a necessary condition is that the weight belongs to the local Ap class. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84701 Cejas, María Eugenia; Duran, Ricardo Guillermo; Weighted a priori estimates for elliptic equations; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 243; 1; 6-2018; 13-24 0039-3223 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84701 |
identifier_str_mv |
Cejas, María Eugenia; Duran, Ricardo Guillermo; Weighted a priori estimates for elliptic equations; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 243; 1; 6-2018; 13-24 0039-3223 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.impan.pl/get/doi/10.4064/sm8704-6-2017 info:eu-repo/semantics/altIdentifier/doi/10.4064/sm8704-6-2017 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.00879 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
publisher.none.fl_str_mv |
Polish Academy of Sciences. Institute of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268694681485312 |
score |
13.13397 |