Thinness and its variations on some graph families and coloring graphs of bounded thinness
- Autores
- Bonomo, Flavia; Brandwein, Eric; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín; Szwarcfiter, Jayme L.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs.We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs $CR_n$. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of $n imes n$ grids $GR_n$ and $m imes n$ grids $GR_{m,n}$, proving that $left lceil rac{n-1}{3} ight ceil leq thin(GR_n) leq left lceil rac{n+1}{2} ight ceil$. Regarding the precedence thinness, we prove that $prec-thin(GR_{n,2}) = left lceil rac{n+1}{2} ight ceil$ and that $left lceil rac{n-1}{3} ight ceil left lceilrac{n-1}{2} ight ceil + 1 leq prec-thin(GR_n) leq left lceilrac{n-1}{2} ight ceil^2+1$. As applications, we show that the $k$-coloring problem is NP-complete for precedence $2$-thin graphs and for proper $2$-thin graphs, when $k$ is part of the input. On the positive side, it is polynomially solvable for precedence proper $2$-thin graphs, given the order and partition.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Brandwein, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Oliveira, Fabiano S.. Universidade do Estado de Rio do Janeiro; Brasil
Fil: Sampaio, Moysés S.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Sansone, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade do Estado de Rio do Janeiro; Brasil. Universidade Federal do Rio de Janeiro; Brasil - Materia
-
(proper) k-thin graphs
cographs
crown graphs
grid graphs
graph coloring - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258769
Ver los metadatos del registro completo
id |
CONICETDig_cbda1b34dd4f5e4ac1a2fee1f7748156 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258769 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thinness and its variations on some graph families and coloring graphs of bounded thinnessBonomo, FlaviaBrandwein, EricOliveira, Fabiano S.Sampaio, Moysés S.Sansone, AgustínSzwarcfiter, Jayme L.(proper) k-thin graphscographscrown graphsgrid graphsgraph coloringhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs.We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs $CR_n$. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of $n imes n$ grids $GR_n$ and $m imes n$ grids $GR_{m,n}$, proving that $left lceil rac{n-1}{3} ight ceil leq thin(GR_n) leq left lceil rac{n+1}{2} ight ceil$. Regarding the precedence thinness, we prove that $prec-thin(GR_{n,2}) = left lceil rac{n+1}{2} ight ceil$ and that $left lceil rac{n-1}{3} ight ceil left lceilrac{n-1}{2} ight ceil + 1 leq prec-thin(GR_n) leq left lceilrac{n-1}{2} ight ceil^2+1$. As applications, we show that the $k$-coloring problem is NP-complete for precedence $2$-thin graphs and for proper $2$-thin graphs, when $k$ is part of the input. On the positive side, it is polynomially solvable for precedence proper $2$-thin graphs, given the order and partition.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brandwein, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Oliveira, Fabiano S.. Universidade do Estado de Rio do Janeiro; BrasilFil: Sampaio, Moysés S.. Universidade Federal do Rio de Janeiro; BrasilFil: Sansone, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade do Estado de Rio do Janeiro; Brasil. Universidade Federal do Rio de Janeiro; BrasilEDP Sciences2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258769Bonomo, Flavia; Brandwein, Eric; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín; et al.; Thinness and its variations on some graph families and coloring graphs of bounded thinness; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 58; 2; 4-2024; 1681-17020399-0559CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2024033info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:50Zoai:ri.conicet.gov.ar:11336/258769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:50.428CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
title |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
spellingShingle |
Thinness and its variations on some graph families and coloring graphs of bounded thinness Bonomo, Flavia (proper) k-thin graphs cographs crown graphs grid graphs graph coloring |
title_short |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
title_full |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
title_fullStr |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
title_full_unstemmed |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
title_sort |
Thinness and its variations on some graph families and coloring graphs of bounded thinness |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Brandwein, Eric Oliveira, Fabiano S. Sampaio, Moysés S. Sansone, Agustín Szwarcfiter, Jayme L. |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Brandwein, Eric Oliveira, Fabiano S. Sampaio, Moysés S. Sansone, Agustín Szwarcfiter, Jayme L. |
author_role |
author |
author2 |
Brandwein, Eric Oliveira, Fabiano S. Sampaio, Moysés S. Sansone, Agustín Szwarcfiter, Jayme L. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
(proper) k-thin graphs cographs crown graphs grid graphs graph coloring |
topic |
(proper) k-thin graphs cographs crown graphs grid graphs graph coloring |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs.We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs $CR_n$. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of $n imes n$ grids $GR_n$ and $m imes n$ grids $GR_{m,n}$, proving that $left lceil rac{n-1}{3} ight ceil leq thin(GR_n) leq left lceil rac{n+1}{2} ight ceil$. Regarding the precedence thinness, we prove that $prec-thin(GR_{n,2}) = left lceil rac{n+1}{2} ight ceil$ and that $left lceil rac{n-1}{3} ight ceil left lceilrac{n-1}{2} ight ceil + 1 leq prec-thin(GR_n) leq left lceilrac{n-1}{2} ight ceil^2+1$. As applications, we show that the $k$-coloring problem is NP-complete for precedence $2$-thin graphs and for proper $2$-thin graphs, when $k$ is part of the input. On the positive side, it is polynomially solvable for precedence proper $2$-thin graphs, given the order and partition. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Brandwein, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Oliveira, Fabiano S.. Universidade do Estado de Rio do Janeiro; Brasil Fil: Sampaio, Moysés S.. Universidade Federal do Rio de Janeiro; Brasil Fil: Sansone, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Szwarcfiter, Jayme L.. Universidade do Estado de Rio do Janeiro; Brasil. Universidade Federal do Rio de Janeiro; Brasil |
description |
Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs.We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs $CR_n$. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of $n imes n$ grids $GR_n$ and $m imes n$ grids $GR_{m,n}$, proving that $left lceil rac{n-1}{3} ight ceil leq thin(GR_n) leq left lceil rac{n+1}{2} ight ceil$. Regarding the precedence thinness, we prove that $prec-thin(GR_{n,2}) = left lceil rac{n+1}{2} ight ceil$ and that $left lceil rac{n-1}{3} ight ceil left lceilrac{n-1}{2} ight ceil + 1 leq prec-thin(GR_n) leq left lceilrac{n-1}{2} ight ceil^2+1$. As applications, we show that the $k$-coloring problem is NP-complete for precedence $2$-thin graphs and for proper $2$-thin graphs, when $k$ is part of the input. On the positive side, it is polynomially solvable for precedence proper $2$-thin graphs, given the order and partition. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258769 Bonomo, Flavia; Brandwein, Eric; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín; et al.; Thinness and its variations on some graph families and coloring graphs of bounded thinness; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 58; 2; 4-2024; 1681-1702 0399-0559 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258769 |
identifier_str_mv |
Bonomo, Flavia; Brandwein, Eric; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín; et al.; Thinness and its variations on some graph families and coloring graphs of bounded thinness; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 58; 2; 4-2024; 1681-1702 0399-0559 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/ro/2024033 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613514121969664 |
score |
13.070432 |