On the (k,i)-coloring of cacti and complete graphs
- Autores
- Bonomo, Flavia; Durán, Guillermo Enrique; Koch, Ivo Valerio; Valencia Pabon, Mario
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the (k,i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k,i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (k,i)- coloring of cycles and we generalize the result in order to derive a polynomial time algorithm for this problem on cacti. We also perform a slight modification to the algorithm in order to obtain a simpler algorithm for the close coloring problem addressed in [R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of cycles and other graphs, J. Combin. Theory B 32:90–94, 1982]. Finally, we present a relation between the (k,i)-coloring problem on complete graphs and weighted binary codes.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Durán, Guillermo Enrique. Universidad de Chile; Chile. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; Francia - Materia
-
Generalized k-tuple coloring
(k,i)-coloring
cactus
complete graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103273
Ver los metadatos del registro completo
id |
CONICETDig_e605172a83c2769e38a59c008be62578 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103273 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the (k,i)-coloring of cacti and complete graphsBonomo, FlaviaDurán, Guillermo EnriqueKoch, Ivo ValerioValencia Pabon, MarioGeneralized k-tuple coloring(k,i)-coloringcactuscomplete graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the (k,i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k,i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (k,i)- coloring of cycles and we generalize the result in order to derive a polynomial time algorithm for this problem on cacti. We also perform a slight modification to the algorithm in order to obtain a simpler algorithm for the close coloring problem addressed in [R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of cycles and other graphs, J. Combin. Theory B 32:90–94, 1982]. Finally, we present a relation between the (k,i)-coloring problem on complete graphs and weighted binary codes.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Durán, Guillermo Enrique. Universidad de Chile; Chile. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; FranciaCharles Babbage Res Ctr2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103273Bonomo, Flavia; Durán, Guillermo Enrique; Koch, Ivo Valerio; Valencia Pabon, Mario; On the (k,i)-coloring of cacti and complete graphs; Charles Babbage Res Ctr; Ars Combinatoria; 137; 1-2018; 317-3330381-7032CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/ArsCombinatoria/Vol137.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:54Zoai:ri.conicet.gov.ar:11336/103273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:54.565CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the (k,i)-coloring of cacti and complete graphs |
title |
On the (k,i)-coloring of cacti and complete graphs |
spellingShingle |
On the (k,i)-coloring of cacti and complete graphs Bonomo, Flavia Generalized k-tuple coloring (k,i)-coloring cactus complete graphs |
title_short |
On the (k,i)-coloring of cacti and complete graphs |
title_full |
On the (k,i)-coloring of cacti and complete graphs |
title_fullStr |
On the (k,i)-coloring of cacti and complete graphs |
title_full_unstemmed |
On the (k,i)-coloring of cacti and complete graphs |
title_sort |
On the (k,i)-coloring of cacti and complete graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Durán, Guillermo Enrique Koch, Ivo Valerio Valencia Pabon, Mario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Durán, Guillermo Enrique Koch, Ivo Valerio Valencia Pabon, Mario |
author_role |
author |
author2 |
Durán, Guillermo Enrique Koch, Ivo Valerio Valencia Pabon, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Generalized k-tuple coloring (k,i)-coloring cactus complete graphs |
topic |
Generalized k-tuple coloring (k,i)-coloring cactus complete graphs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the (k,i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k,i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (k,i)- coloring of cycles and we generalize the result in order to derive a polynomial time algorithm for this problem on cacti. We also perform a slight modification to the algorithm in order to obtain a simpler algorithm for the close coloring problem addressed in [R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of cycles and other graphs, J. Combin. Theory B 32:90–94, 1982]. Finally, we present a relation between the (k,i)-coloring problem on complete graphs and weighted binary codes. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Durán, Guillermo Enrique. Universidad de Chile; Chile. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento; Argentina Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; Francia |
description |
In the (k,i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k,i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (k,i)- coloring of cycles and we generalize the result in order to derive a polynomial time algorithm for this problem on cacti. We also perform a slight modification to the algorithm in order to obtain a simpler algorithm for the close coloring problem addressed in [R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of cycles and other graphs, J. Combin. Theory B 32:90–94, 1982]. Finally, we present a relation between the (k,i)-coloring problem on complete graphs and weighted binary codes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103273 Bonomo, Flavia; Durán, Guillermo Enrique; Koch, Ivo Valerio; Valencia Pabon, Mario; On the (k,i)-coloring of cacti and complete graphs; Charles Babbage Res Ctr; Ars Combinatoria; 137; 1-2018; 317-333 0381-7032 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103273 |
identifier_str_mv |
Bonomo, Flavia; Durán, Guillermo Enrique; Koch, Ivo Valerio; Valencia Pabon, Mario; On the (k,i)-coloring of cacti and complete graphs; Charles Babbage Res Ctr; Ars Combinatoria; 137; 1-2018; 317-333 0381-7032 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/ArsCombinatoria/Vol137.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082932237664256 |
score |
13.22299 |