Probe interval graphs and probe unit interval graphs on superclasses of cographs

Autores
Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; Chile
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
P4-Tidy Graphs
Forbidden Induced Subgraphs
Probe Interval Graphs
Probe Unit Interval Graphs
Tree-Cographs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2747

id CONICETDig_05f5aa40b8f8efa436791a0c27e994f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/2747
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Probe interval graphs and probe unit interval graphs on superclasses of cographsBonomo, FlaviaDuran, Guillermo AlfredoGrippo, Luciano NorbertoSafe, Martin DarioP4-Tidy GraphsForbidden Induced SubgraphsProbe Interval GraphsProbe Unit Interval GraphsTree-Cographshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; ChileFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDiscrete Mathematics Theoretical Computer Science2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2747Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-1941365-8050enginfo:eu-repo/semantics/altIdentifier/url/http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2124info:eu-repo/semantics/altIdentifier/url/http://dmtcs.episciences.org/602info:eu-repo/semantics/altIdentifier/url/https://hal.archives-ouvertes.fr/hal-00980766v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:33Zoai:ri.conicet.gov.ar:11336/2747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:33.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Probe interval graphs and probe unit interval graphs on superclasses of cographs
title Probe interval graphs and probe unit interval graphs on superclasses of cographs
spellingShingle Probe interval graphs and probe unit interval graphs on superclasses of cographs
Bonomo, Flavia
P4-Tidy Graphs
Forbidden Induced Subgraphs
Probe Interval Graphs
Probe Unit Interval Graphs
Tree-Cographs
title_short Probe interval graphs and probe unit interval graphs on superclasses of cographs
title_full Probe interval graphs and probe unit interval graphs on superclasses of cographs
title_fullStr Probe interval graphs and probe unit interval graphs on superclasses of cographs
title_full_unstemmed Probe interval graphs and probe unit interval graphs on superclasses of cographs
title_sort Probe interval graphs and probe unit interval graphs on superclasses of cographs
dc.creator.none.fl_str_mv Bonomo, Flavia
Duran, Guillermo Alfredo
Grippo, Luciano Norberto
Safe, Martin Dario
author Bonomo, Flavia
author_facet Bonomo, Flavia
Duran, Guillermo Alfredo
Grippo, Luciano Norberto
Safe, Martin Dario
author_role author
author2 Duran, Guillermo Alfredo
Grippo, Luciano Norberto
Safe, Martin Dario
author2_role author
author
author
dc.subject.none.fl_str_mv P4-Tidy Graphs
Forbidden Induced Subgraphs
Probe Interval Graphs
Probe Unit Interval Graphs
Tree-Cographs
topic P4-Tidy Graphs
Forbidden Induced Subgraphs
Probe Interval Graphs
Probe Unit Interval Graphs
Tree-Cographs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; Chile
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2747
Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-194
1365-8050
url http://hdl.handle.net/11336/2747
identifier_str_mv Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-194
1365-8050
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2124
info:eu-repo/semantics/altIdentifier/url/http://dmtcs.episciences.org/602
info:eu-repo/semantics/altIdentifier/url/https://hal.archives-ouvertes.fr/hal-00980766v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Discrete Mathematics Theoretical Computer Science
publisher.none.fl_str_mv Discrete Mathematics Theoretical Computer Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270162995118080
score 13.13397