Probe interval graphs and probe unit interval graphs on superclasses of cographs
- Autores
- Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; Chile
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
P4-Tidy Graphs
Forbidden Induced Subgraphs
Probe Interval Graphs
Probe Unit Interval Graphs
Tree-Cographs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2747
Ver los metadatos del registro completo
id |
CONICETDig_05f5aa40b8f8efa436791a0c27e994f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2747 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Probe interval graphs and probe unit interval graphs on superclasses of cographsBonomo, FlaviaDuran, Guillermo AlfredoGrippo, Luciano NorbertoSafe, Martin DarioP4-Tidy GraphsForbidden Induced SubgraphsProbe Interval GraphsProbe Unit Interval GraphsTree-Cographshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; ChileFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDiscrete Mathematics Theoretical Computer Science2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2747Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-1941365-8050enginfo:eu-repo/semantics/altIdentifier/url/http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2124info:eu-repo/semantics/altIdentifier/url/http://dmtcs.episciences.org/602info:eu-repo/semantics/altIdentifier/url/https://hal.archives-ouvertes.fr/hal-00980766v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:33Zoai:ri.conicet.gov.ar:11336/2747instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:33.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
title |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
spellingShingle |
Probe interval graphs and probe unit interval graphs on superclasses of cographs Bonomo, Flavia P4-Tidy Graphs Forbidden Induced Subgraphs Probe Interval Graphs Probe Unit Interval Graphs Tree-Cographs |
title_short |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
title_full |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
title_fullStr |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
title_full_unstemmed |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
title_sort |
Probe interval graphs and probe unit interval graphs on superclasses of cographs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Duran, Guillermo Alfredo Grippo, Luciano Norberto Safe, Martin Dario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Duran, Guillermo Alfredo Grippo, Luciano Norberto Safe, Martin Dario |
author_role |
author |
author2 |
Duran, Guillermo Alfredo Grippo, Luciano Norberto Safe, Martin Dario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
P4-Tidy Graphs Forbidden Induced Subgraphs Probe Interval Graphs Probe Unit Interval Graphs Tree-Cographs |
topic |
P4-Tidy Graphs Forbidden Induced Subgraphs Probe Interval Graphs Probe Unit Interval Graphs Tree-Cographs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Duran, Guillermo Alfredo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Ingeniería Industrial; Chile Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non–(probe G) graphs with disconnected complement for every graph class G with a companion. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2747 Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-194 1365-8050 |
url |
http://hdl.handle.net/11336/2747 |
identifier_str_mv |
Bonomo, Flavia; Duran, Guillermo Alfredo; Grippo, Luciano Norberto; Safe, Martin Dario; Probe interval graphs and probe unit interval graphs on superclasses of cographs; Discrete Mathematics Theoretical Computer Science; Discrete Mathematics and Theoretical Computer Science; 15; 2; 8-2013; 177-194 1365-8050 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2124 info:eu-repo/semantics/altIdentifier/url/http://dmtcs.episciences.org/602 info:eu-repo/semantics/altIdentifier/url/https://hal.archives-ouvertes.fr/hal-00980766v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Discrete Mathematics Theoretical Computer Science |
publisher.none.fl_str_mv |
Discrete Mathematics Theoretical Computer Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270162995118080 |
score |
13.13397 |