On the Minimum Sum Coloring of P4-sparse graphs
- Autores
- Bonomo, Flavia; Valencia Pabon, Mario
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia - Materia
-
Graph Coloring
Minimum Sum Coloring
P4-Sparse Graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18782
Ver los metadatos del registro completo
id |
CONICETDig_2a55840c80e99e8171c28b3804b9d407 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18782 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Minimum Sum Coloring of P4-sparse graphsBonomo, FlaviaValencia Pabon, MarioGraph ColoringMinimum Sum ColoringP4-Sparse Graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; FranciaSpringer Tokyo2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18782Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-3140911-01191435-5914CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00373-012-1269-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00373-012-1269-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:18Zoai:ri.conicet.gov.ar:11336/18782instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:18.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Minimum Sum Coloring of P4-sparse graphs |
title |
On the Minimum Sum Coloring of P4-sparse graphs |
spellingShingle |
On the Minimum Sum Coloring of P4-sparse graphs Bonomo, Flavia Graph Coloring Minimum Sum Coloring P4-Sparse Graphs |
title_short |
On the Minimum Sum Coloring of P4-sparse graphs |
title_full |
On the Minimum Sum Coloring of P4-sparse graphs |
title_fullStr |
On the Minimum Sum Coloring of P4-sparse graphs |
title_full_unstemmed |
On the Minimum Sum Coloring of P4-sparse graphs |
title_sort |
On the Minimum Sum Coloring of P4-sparse graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Valencia Pabon, Mario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Valencia Pabon, Mario |
author_role |
author |
author2 |
Valencia Pabon, Mario |
author2_role |
author |
dc.subject.none.fl_str_mv |
Graph Coloring Minimum Sum Coloring P4-Sparse Graphs |
topic |
Graph Coloring Minimum Sum Coloring P4-Sparse Graphs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia |
description |
In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18782 Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-314 0911-0119 1435-5914 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18782 |
identifier_str_mv |
Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-314 0911-0119 1435-5914 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00373-012-1269-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00373-012-1269-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Tokyo |
publisher.none.fl_str_mv |
Springer Tokyo |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269086559502336 |
score |
13.13397 |