On the Minimum Sum Coloring of P4-sparse graphs

Autores
Bonomo, Flavia; Valencia Pabon, Mario
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia
Materia
Graph Coloring
Minimum Sum Coloring
P4-Sparse Graphs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18782

id CONICETDig_2a55840c80e99e8171c28b3804b9d407
oai_identifier_str oai:ri.conicet.gov.ar:11336/18782
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Minimum Sum Coloring of P4-sparse graphsBonomo, FlaviaValencia Pabon, MarioGraph ColoringMinimum Sum ColoringP4-Sparse Graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; FranciaSpringer Tokyo2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18782Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-3140911-01191435-5914CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00373-012-1269-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00373-012-1269-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:18Zoai:ri.conicet.gov.ar:11336/18782instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:18.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Minimum Sum Coloring of P4-sparse graphs
title On the Minimum Sum Coloring of P4-sparse graphs
spellingShingle On the Minimum Sum Coloring of P4-sparse graphs
Bonomo, Flavia
Graph Coloring
Minimum Sum Coloring
P4-Sparse Graphs
title_short On the Minimum Sum Coloring of P4-sparse graphs
title_full On the Minimum Sum Coloring of P4-sparse graphs
title_fullStr On the Minimum Sum Coloring of P4-sparse graphs
title_full_unstemmed On the Minimum Sum Coloring of P4-sparse graphs
title_sort On the Minimum Sum Coloring of P4-sparse graphs
dc.creator.none.fl_str_mv Bonomo, Flavia
Valencia Pabon, Mario
author Bonomo, Flavia
author_facet Bonomo, Flavia
Valencia Pabon, Mario
author_role author
author2 Valencia Pabon, Mario
author2_role author
dc.subject.none.fl_str_mv Graph Coloring
Minimum Sum Coloring
P4-Sparse Graphs
topic Graph Coloring
Minimum Sum Coloring
P4-Sparse Graphs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia
description In this paper, we study the Minimum Sum Coloring (MSC) problem on P4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P4-sparse graphs.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18782
Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-314
0911-0119
1435-5914
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18782
identifier_str_mv Bonomo, Flavia; Valencia Pabon, Mario; On the Minimum Sum Coloring of P4-sparse graphs; Springer Tokyo; Graphs And Combinatorics; 30; 2; 3-2014; 303-314
0911-0119
1435-5914
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00373-012-1269-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00373-012-1269-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Tokyo
publisher.none.fl_str_mv Springer Tokyo
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269086559502336
score 13.13397