Between coloring and list-coloring: μ-coloring

Autores
Bonomo, Flavia; Cecowski Palacio, Mariano
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Cographs
Coloring
List-Coloring
Μ-Coloring
M-Perfect Graphs
Perfect Graphs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14910

id CONICETDig_7060e36a247bcae87694dbe0db437bcb
oai_identifier_str oai:ri.conicet.gov.ar:11336/14910
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Between coloring and list-coloring: μ-coloringBonomo, FlaviaCecowski Palacio, MarianoCographsColoringList-ColoringΜ-ColoringM-Perfect GraphsPerfect Graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaCharles Babbage Res Ctr2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14910Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-3980381-7032enginfo:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:25Zoai:ri.conicet.gov.ar:11336/14910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:25.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Between coloring and list-coloring: μ-coloring
title Between coloring and list-coloring: μ-coloring
spellingShingle Between coloring and list-coloring: μ-coloring
Bonomo, Flavia
Cographs
Coloring
List-Coloring
Μ-Coloring
M-Perfect Graphs
Perfect Graphs
title_short Between coloring and list-coloring: μ-coloring
title_full Between coloring and list-coloring: μ-coloring
title_fullStr Between coloring and list-coloring: μ-coloring
title_full_unstemmed Between coloring and list-coloring: μ-coloring
title_sort Between coloring and list-coloring: μ-coloring
dc.creator.none.fl_str_mv Bonomo, Flavia
Cecowski Palacio, Mariano
author Bonomo, Flavia
author_facet Bonomo, Flavia
Cecowski Palacio, Mariano
author_role author
author2 Cecowski Palacio, Mariano
author2_role author
dc.subject.none.fl_str_mv Cographs
Coloring
List-Coloring
Μ-Coloring
M-Perfect Graphs
Perfect Graphs
topic Cographs
Coloring
List-Coloring
Μ-Coloring
M-Perfect Graphs
Perfect Graphs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14910
Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398
0381-7032
url http://hdl.handle.net/11336/14910
identifier_str_mv Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398
0381-7032
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Charles Babbage Res Ctr
publisher.none.fl_str_mv Charles Babbage Res Ctr
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082688877854720
score 13.22299