Between coloring and list-coloring: μ-coloring
- Autores
- Bonomo, Flavia; Cecowski Palacio, Mariano
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina - Materia
-
Cographs
Coloring
List-Coloring
Μ-Coloring
M-Perfect Graphs
Perfect Graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14910
Ver los metadatos del registro completo
id |
CONICETDig_7060e36a247bcae87694dbe0db437bcb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14910 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Between coloring and list-coloring: μ-coloringBonomo, FlaviaCecowski Palacio, MarianoCographsColoringList-ColoringΜ-ColoringM-Perfect GraphsPerfect Graphshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaCharles Babbage Res Ctr2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14910Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-3980381-7032enginfo:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:25Zoai:ri.conicet.gov.ar:11336/14910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:25.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Between coloring and list-coloring: μ-coloring |
title |
Between coloring and list-coloring: μ-coloring |
spellingShingle |
Between coloring and list-coloring: μ-coloring Bonomo, Flavia Cographs Coloring List-Coloring Μ-Coloring M-Perfect Graphs Perfect Graphs |
title_short |
Between coloring and list-coloring: μ-coloring |
title_full |
Between coloring and list-coloring: μ-coloring |
title_fullStr |
Between coloring and list-coloring: μ-coloring |
title_full_unstemmed |
Between coloring and list-coloring: μ-coloring |
title_sort |
Between coloring and list-coloring: μ-coloring |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Cecowski Palacio, Mariano |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Cecowski Palacio, Mariano |
author_role |
author |
author2 |
Cecowski Palacio, Mariano |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cographs Coloring List-Coloring Μ-Coloring M-Perfect Graphs Perfect Graphs |
topic |
Cographs Coloring List-Coloring Μ-Coloring M-Perfect Graphs Perfect Graphs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cecowski Palacio, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
description |
A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V,E) is a function f: V -> N such that f(v) is different from f(w) if v is adjacent to w. Given a graph G = (V,E) and a function mu: V -> N, G is mu-colorable if it admits a coloring f with f(v)<= mu(v) for each v in V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Besides, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14910 Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398 0381-7032 |
url |
http://hdl.handle.net/11336/14910 |
identifier_str_mv |
Bonomo, Flavia; Cecowski Palacio, Mariano; Between coloring and list-coloring: μ-coloring; Charles Babbage Res Ctr; Ars Combinatoria; 99; 5-2011; 383-398 0381-7032 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.combinatorialmath.ca/arscombinatoria/vol99.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
publisher.none.fl_str_mv |
Charles Babbage Res Ctr |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082688877854720 |
score |
13.22299 |