Cluster values for algebras of analytic functions
- Autores
- Carando, Daniel Germán; Galicer, Daniel Eric; Muro, Luis Santiago Miguel; Sevilla Peris, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra Au(BX), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball BX; and also for the Fréchet algebra Hb(X) of holomorphic functions of bounded type on X (more generally, for Hb(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U⊂X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space. As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras.
Fil: Carando, Daniel. Universidad de Buenos Aires; Argentina
Fil: Galicer, Daniel. Universidad de Buenos Aires; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
ANALYTIC FUNCTIONS OF BOUNDED TYPE
BALL ALGEBRA
CLUSTER VALUE PROBLEM
CORONA THEOREM
FIBER
SPECTRUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92695
Ver los metadatos del registro completo
| id |
CONICETDig_c3a5542581f931600520bfd979fe2817 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92695 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Cluster values for algebras of analytic functionsCarando, Daniel GermánGalicer, Daniel EricMuro, Luis Santiago MiguelSevilla Peris, PabloANALYTIC FUNCTIONS OF BOUNDED TYPEBALL ALGEBRACLUSTER VALUE PROBLEMCORONA THEOREMFIBERSPECTRUMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra Au(BX), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball BX; and also for the Fréchet algebra Hb(X) of holomorphic functions of bounded type on X (more generally, for Hb(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U⊂X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space. As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras.Fil: Carando, Daniel. Universidad de Buenos Aires; ArgentinaFil: Galicer, Daniel. Universidad de Buenos Aires; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; EspañaAcademic Press Inc Elsevier Science2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92695Carando, Daniel Germán; Galicer, Daniel Eric; Muro, Luis Santiago Miguel; Sevilla Peris, Pablo; Cluster values for algebras of analytic functions; Academic Press Inc Elsevier Science; Advances in Mathematics; 329; 4-2018; 157-1730001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2017.08.030info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816312075info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.05697info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:15Zoai:ri.conicet.gov.ar:11336/92695instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:15.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Cluster values for algebras of analytic functions |
| title |
Cluster values for algebras of analytic functions |
| spellingShingle |
Cluster values for algebras of analytic functions Carando, Daniel Germán ANALYTIC FUNCTIONS OF BOUNDED TYPE BALL ALGEBRA CLUSTER VALUE PROBLEM CORONA THEOREM FIBER SPECTRUM |
| title_short |
Cluster values for algebras of analytic functions |
| title_full |
Cluster values for algebras of analytic functions |
| title_fullStr |
Cluster values for algebras of analytic functions |
| title_full_unstemmed |
Cluster values for algebras of analytic functions |
| title_sort |
Cluster values for algebras of analytic functions |
| dc.creator.none.fl_str_mv |
Carando, Daniel Germán Galicer, Daniel Eric Muro, Luis Santiago Miguel Sevilla Peris, Pablo |
| author |
Carando, Daniel Germán |
| author_facet |
Carando, Daniel Germán Galicer, Daniel Eric Muro, Luis Santiago Miguel Sevilla Peris, Pablo |
| author_role |
author |
| author2 |
Galicer, Daniel Eric Muro, Luis Santiago Miguel Sevilla Peris, Pablo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ANALYTIC FUNCTIONS OF BOUNDED TYPE BALL ALGEBRA CLUSTER VALUE PROBLEM CORONA THEOREM FIBER SPECTRUM |
| topic |
ANALYTIC FUNCTIONS OF BOUNDED TYPE BALL ALGEBRA CLUSTER VALUE PROBLEM CORONA THEOREM FIBER SPECTRUM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra Au(BX), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball BX; and also for the Fréchet algebra Hb(X) of holomorphic functions of bounded type on X (more generally, for Hb(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U⊂X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space. As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras. Fil: Carando, Daniel. Universidad de Buenos Aires; Argentina Fil: Galicer, Daniel. Universidad de Buenos Aires; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España |
| description |
The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra Au(BX), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball BX; and also for the Fréchet algebra Hb(X) of holomorphic functions of bounded type on X (more generally, for Hb(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U⊂X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space. As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92695 Carando, Daniel Germán; Galicer, Daniel Eric; Muro, Luis Santiago Miguel; Sevilla Peris, Pablo; Cluster values for algebras of analytic functions; Academic Press Inc Elsevier Science; Advances in Mathematics; 329; 4-2018; 157-173 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/92695 |
| identifier_str_mv |
Carando, Daniel Germán; Galicer, Daniel Eric; Muro, Luis Santiago Miguel; Sevilla Peris, Pablo; Cluster values for algebras of analytic functions; Academic Press Inc Elsevier Science; Advances in Mathematics; 329; 4-2018; 157-173 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2017.08.030 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816312075 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.05697 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781799345160192 |
| score |
12.982451 |