Envelopes of holomorphy and extension of functions of bounded type

Autores
Carando, Daniel Germán; Muro, Luis Santiago Miguel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
ENVELOPE OF HOLOMORPHY
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
RIEMANN DOMAINS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127504

id CONICETDig_0322838f5c02dc50059642679e608d04
oai_identifier_str oai:ri.conicet.gov.ar:11336/127504
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Envelopes of holomorphy and extension of functions of bounded typeCarando, Daniel GermánMuro, Luis Santiago MiguelENVELOPE OF HOLOMORPHYHOLOMORPHIC FUNCTIONS OF BOUNDED TYPERIEMANN DOMAINShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127504Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-21210001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2011.10.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870811003732info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0904.2384info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:31:02Zoai:ri.conicet.gov.ar:11336/127504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:31:02.771CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Envelopes of holomorphy and extension of functions of bounded type
title Envelopes of holomorphy and extension of functions of bounded type
spellingShingle Envelopes of holomorphy and extension of functions of bounded type
Carando, Daniel Germán
ENVELOPE OF HOLOMORPHY
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
RIEMANN DOMAINS
title_short Envelopes of holomorphy and extension of functions of bounded type
title_full Envelopes of holomorphy and extension of functions of bounded type
title_fullStr Envelopes of holomorphy and extension of functions of bounded type
title_full_unstemmed Envelopes of holomorphy and extension of functions of bounded type
title_sort Envelopes of holomorphy and extension of functions of bounded type
dc.creator.none.fl_str_mv Carando, Daniel Germán
Muro, Luis Santiago Miguel
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Muro, Luis Santiago Miguel
author_role author
author2 Muro, Luis Santiago Miguel
author2_role author
dc.subject.none.fl_str_mv ENVELOPE OF HOLOMORPHY
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
RIEMANN DOMAINS
topic ENVELOPE OF HOLOMORPHY
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
RIEMANN DOMAINS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127504
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-2121
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127504
identifier_str_mv Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-2121
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2011.10.019
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870811003732
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0904.2384
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606668376539136
score 13.001348