Envelopes of holomorphy and extension of functions of bounded type
- Autores
- Carando, Daniel Germán; Muro, Luis Santiago Miguel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
ENVELOPE OF HOLOMORPHY
HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
RIEMANN DOMAINS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127504
Ver los metadatos del registro completo
id |
CONICETDig_0322838f5c02dc50059642679e608d04 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127504 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Envelopes of holomorphy and extension of functions of bounded typeCarando, Daniel GermánMuro, Luis Santiago MiguelENVELOPE OF HOLOMORPHYHOLOMORPHIC FUNCTIONS OF BOUNDED TYPERIEMANN DOMAINShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127504Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-21210001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2011.10.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870811003732info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0904.2384info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:31:02Zoai:ri.conicet.gov.ar:11336/127504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:31:02.771CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Envelopes of holomorphy and extension of functions of bounded type |
title |
Envelopes of holomorphy and extension of functions of bounded type |
spellingShingle |
Envelopes of holomorphy and extension of functions of bounded type Carando, Daniel Germán ENVELOPE OF HOLOMORPHY HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE RIEMANN DOMAINS |
title_short |
Envelopes of holomorphy and extension of functions of bounded type |
title_full |
Envelopes of holomorphy and extension of functions of bounded type |
title_fullStr |
Envelopes of holomorphy and extension of functions of bounded type |
title_full_unstemmed |
Envelopes of holomorphy and extension of functions of bounded type |
title_sort |
Envelopes of holomorphy and extension of functions of bounded type |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Muro, Luis Santiago Miguel |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Muro, Luis Santiago Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
ENVELOPE OF HOLOMORPHY HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE RIEMANN DOMAINS |
topic |
ENVELOPE OF HOLOMORPHY HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE RIEMANN DOMAINS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127504 Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-2121 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127504 |
identifier_str_mv |
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Envelopes of holomorphy and extension of functions of bounded type; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3; 2-2012; 2098-2121 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2011.10.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870811003732 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0904.2384 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606668376539136 |
score |
13.001348 |