A counterexample for H ∞ approximable functions
- Autores
- Suarez, Fernando Daniel
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
BOUNDED ANALYTIC FUNCTIONS
UNIFORM APPROXIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111742
Ver los metadatos del registro completo
| id |
CONICETDig_85c7f1c2a3fcece4142459dad4974cd9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111742 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A counterexample for H ∞ approximable functionsSuarez, Fernando DanielBOUNDED ANALYTIC FUNCTIONSUNIFORM APPROXIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2000-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111742Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-30070002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/S0002-9939-00-05577-5/S0002-9939-00-05577-5.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:14:01Zoai:ri.conicet.gov.ar:11336/111742instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:14:01.564CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A counterexample for H ∞ approximable functions |
| title |
A counterexample for H ∞ approximable functions |
| spellingShingle |
A counterexample for H ∞ approximable functions Suarez, Fernando Daniel BOUNDED ANALYTIC FUNCTIONS UNIFORM APPROXIMATION |
| title_short |
A counterexample for H ∞ approximable functions |
| title_full |
A counterexample for H ∞ approximable functions |
| title_fullStr |
A counterexample for H ∞ approximable functions |
| title_full_unstemmed |
A counterexample for H ∞ approximable functions |
| title_sort |
A counterexample for H ∞ approximable functions |
| dc.creator.none.fl_str_mv |
Suarez, Fernando Daniel |
| author |
Suarez, Fernando Daniel |
| author_facet |
Suarez, Fernando Daniel |
| author_role |
author |
| dc.subject.none.fl_str_mv |
BOUNDED ANALYTIC FUNCTIONS UNIFORM APPROXIMATION |
| topic |
BOUNDED ANALYTIC FUNCTIONS UNIFORM APPROXIMATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray. Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray. |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111742 Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-3007 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/111742 |
| identifier_str_mv |
Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-3007 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/home.html info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/S0002-9939-00-05577-5/S0002-9939-00-05577-5.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781555834355712 |
| score |
12.982451 |