A counterexample for H ∞ approximable functions

Autores
Suarez, Fernando Daniel
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
BOUNDED ANALYTIC FUNCTIONS
UNIFORM APPROXIMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111742

id CONICETDig_85c7f1c2a3fcece4142459dad4974cd9
oai_identifier_str oai:ri.conicet.gov.ar:11336/111742
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A counterexample for H ∞ approximable functionsSuarez, Fernando DanielBOUNDED ANALYTIC FUNCTIONSUNIFORM APPROXIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2000-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111742Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-30070002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/S0002-9939-00-05577-5/S0002-9939-00-05577-5.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:14:01Zoai:ri.conicet.gov.ar:11336/111742instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:14:01.564CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A counterexample for H ∞ approximable functions
title A counterexample for H ∞ approximable functions
spellingShingle A counterexample for H ∞ approximable functions
Suarez, Fernando Daniel
BOUNDED ANALYTIC FUNCTIONS
UNIFORM APPROXIMATION
title_short A counterexample for H ∞ approximable functions
title_full A counterexample for H ∞ approximable functions
title_fullStr A counterexample for H ∞ approximable functions
title_full_unstemmed A counterexample for H ∞ approximable functions
title_sort A counterexample for H ∞ approximable functions
dc.creator.none.fl_str_mv Suarez, Fernando Daniel
author Suarez, Fernando Daniel
author_facet Suarez, Fernando Daniel
author_role author
dc.subject.none.fl_str_mv BOUNDED ANALYTIC FUNCTIONS
UNIFORM APPROXIMATION
topic BOUNDED ANALYTIC FUNCTIONS
UNIFORM APPROXIMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Let D be the unit disk. We show that for some relatively closed set F ⊂ D there is a function f that can be uniformly approximated on F by functions of H∞, but such that f cannot be written as f = h + g, with h ∈ H∞ and g uniformly continuous on F. This answers a question of Stray.
publishDate 2000
dc.date.none.fl_str_mv 2000-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111742
Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-3007
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111742
identifier_str_mv Suarez, Fernando Daniel; A counterexample for H ∞ approximable functions; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 10; 12-2000; 3003-3007
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/home.html
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-10/S0002-9939-00-05577-5/S0002-9939-00-05577-5.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781555834355712
score 12.982451