Homomorphisms between Algebras of Holomorphic Functions
- Autores
- Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Rodriguez, Domingo. Universidad de Valencia; España
Fil: Maestre Vera, Manuel. Universidad de Valencia; España
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España - Materia
-
Holomorphic functions
Spectrum
Algebra homomorphisms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33798
Ver los metadatos del registro completo
id |
CONICETDig_ff1a83ac8e8e13ca1045917bc3ba7ee8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33798 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homomorphisms between Algebras of Holomorphic FunctionsDimant, Veronica IsabelGarcia Rodriguez, DomingoMaestre Vera, ManuelSevilla Peris, PabloHolomorphic functionsSpectrumAlgebra homomorphismshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Rodriguez, Domingo. Universidad de Valencia; EspañaFil: Maestre Vera, Manuel. Universidad de Valencia; EspañaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaHindawi Publishing Corporation2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33798Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 123041085-33751687-0409CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2014/612304info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/aaa/2014/612304/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:32Zoai:ri.conicet.gov.ar:11336/33798instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:32.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homomorphisms between Algebras of Holomorphic Functions |
title |
Homomorphisms between Algebras of Holomorphic Functions |
spellingShingle |
Homomorphisms between Algebras of Holomorphic Functions Dimant, Veronica Isabel Holomorphic functions Spectrum Algebra homomorphisms |
title_short |
Homomorphisms between Algebras of Holomorphic Functions |
title_full |
Homomorphisms between Algebras of Holomorphic Functions |
title_fullStr |
Homomorphisms between Algebras of Holomorphic Functions |
title_full_unstemmed |
Homomorphisms between Algebras of Holomorphic Functions |
title_sort |
Homomorphisms between Algebras of Holomorphic Functions |
dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Garcia Rodriguez, Domingo Maestre Vera, Manuel Sevilla Peris, Pablo |
author |
Dimant, Veronica Isabel |
author_facet |
Dimant, Veronica Isabel Garcia Rodriguez, Domingo Maestre Vera, Manuel Sevilla Peris, Pablo |
author_role |
author |
author2 |
Garcia Rodriguez, Domingo Maestre Vera, Manuel Sevilla Peris, Pablo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Holomorphic functions Spectrum Algebra homomorphisms |
topic |
Holomorphic functions Spectrum Algebra homomorphisms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞(). Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Garcia Rodriguez, Domingo. Universidad de Valencia; España Fil: Maestre Vera, Manuel. Universidad de Valencia; España Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España |
description |
For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞(). |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33798 Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 12304 1085-3375 1687-0409 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33798 |
identifier_str_mv |
Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 12304 1085-3375 1687-0409 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2014/612304 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/aaa/2014/612304/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980469072723968 |
score |
12.993085 |