Homomorphisms between Algebras of Holomorphic Functions

Autores
Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Rodriguez, Domingo. Universidad de Valencia; España
Fil: Maestre Vera, Manuel. Universidad de Valencia; España
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
Materia
Holomorphic functions
Spectrum
Algebra homomorphisms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33798

id CONICETDig_ff1a83ac8e8e13ca1045917bc3ba7ee8
oai_identifier_str oai:ri.conicet.gov.ar:11336/33798
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homomorphisms between Algebras of Holomorphic FunctionsDimant, Veronica IsabelGarcia Rodriguez, DomingoMaestre Vera, ManuelSevilla Peris, PabloHolomorphic functionsSpectrumAlgebra homomorphismshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Rodriguez, Domingo. Universidad de Valencia; EspañaFil: Maestre Vera, Manuel. Universidad de Valencia; EspañaFil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; EspañaHindawi Publishing Corporation2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33798Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 123041085-33751687-0409CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2014/612304info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/aaa/2014/612304/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:32Zoai:ri.conicet.gov.ar:11336/33798instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:32.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homomorphisms between Algebras of Holomorphic Functions
title Homomorphisms between Algebras of Holomorphic Functions
spellingShingle Homomorphisms between Algebras of Holomorphic Functions
Dimant, Veronica Isabel
Holomorphic functions
Spectrum
Algebra homomorphisms
title_short Homomorphisms between Algebras of Holomorphic Functions
title_full Homomorphisms between Algebras of Holomorphic Functions
title_fullStr Homomorphisms between Algebras of Holomorphic Functions
title_full_unstemmed Homomorphisms between Algebras of Holomorphic Functions
title_sort Homomorphisms between Algebras of Holomorphic Functions
dc.creator.none.fl_str_mv Dimant, Veronica Isabel
Garcia Rodriguez, Domingo
Maestre Vera, Manuel
Sevilla Peris, Pablo
author Dimant, Veronica Isabel
author_facet Dimant, Veronica Isabel
Garcia Rodriguez, Domingo
Maestre Vera, Manuel
Sevilla Peris, Pablo
author_role author
author2 Garcia Rodriguez, Domingo
Maestre Vera, Manuel
Sevilla Peris, Pablo
author2_role author
author
author
dc.subject.none.fl_str_mv Holomorphic functions
Spectrum
Algebra homomorphisms
topic Holomorphic functions
Spectrum
Algebra homomorphisms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().
Fil: Dimant, Veronica Isabel. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Rodriguez, Domingo. Universidad de Valencia; España
Fil: Maestre Vera, Manuel. Universidad de Valencia; España
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
description For two complex Banach spaces and , in this paper, we study the generalized spectrum M(, ) of all nonzero algebra homomorphisms from H(), the algebra of all bounded type entire functions on , into H(). We endow M(, ) with a structure of Riemann domain over L(∗, ∗) whenever is symmetrically regular. The size of the fibers is also studied. Following the philosophy of (Aron et al., 1991), this is a step to study the set M,∞(, ) of all nonzero algebra homomorphisms from H() into H∞() of bounded holomorphic functions on the open unit ball of and M∞(, ) of all nonzero algebra homomorphisms from H∞() into H∞().
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33798
Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 12304
1085-3375
1687-0409
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33798
identifier_str_mv Dimant, Veronica Isabel; Garcia Rodriguez, Domingo; Maestre Vera, Manuel; Sevilla Peris, Pablo; Homomorphisms between Algebras of Holomorphic Functions; Hindawi Publishing Corporation; Abstract And Applied Analysis; 2014; 5-2014; 1-12; 12304
1085-3375
1687-0409
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1155/2014/612304
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/aaa/2014/612304/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980469072723968
score 12.993085