The algebra of bounded-type holomorphic functions on the ball
- Autores
- Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Vieira, Daniela. Universidade de Sao Paulo; Brasil - Materia
-
HOLOMORPHIC FUNCTIONS
RIEMANN DOMAINS
SPECTRUM OF ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143183
Ver los metadatos del registro completo
id |
CONICETDig_8a10daac1e60f3a73c02ded7b938f381 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143183 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The algebra of bounded-type holomorphic functions on the ballCarando, Daniel GermánMuro, Luis Santiago MiguelVieira, DanielaHOLOMORPHIC FUNCTIONSRIEMANN DOMAINSSPECTRUM OF ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Vieira, Daniela. Universidade de Sao Paulo; BrasilAmerican Mathematical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143183Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-24570002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/2020-148-06/S0002-9939-2020-14471-1/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14471info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:40Zoai:ri.conicet.gov.ar:11336/143183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:40.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The algebra of bounded-type holomorphic functions on the ball |
title |
The algebra of bounded-type holomorphic functions on the ball |
spellingShingle |
The algebra of bounded-type holomorphic functions on the ball Carando, Daniel Germán HOLOMORPHIC FUNCTIONS RIEMANN DOMAINS SPECTRUM OF ALGEBRAS |
title_short |
The algebra of bounded-type holomorphic functions on the ball |
title_full |
The algebra of bounded-type holomorphic functions on the ball |
title_fullStr |
The algebra of bounded-type holomorphic functions on the ball |
title_full_unstemmed |
The algebra of bounded-type holomorphic functions on the ball |
title_sort |
The algebra of bounded-type holomorphic functions on the ball |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Muro, Luis Santiago Miguel Vieira, Daniela |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Muro, Luis Santiago Miguel Vieira, Daniela |
author_role |
author |
author2 |
Muro, Luis Santiago Miguel Vieira, Daniela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HOLOMORPHIC FUNCTIONS RIEMANN DOMAINS SPECTRUM OF ALGEBRAS |
topic |
HOLOMORPHIC FUNCTIONS RIEMANN DOMAINS SPECTRUM OF ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Vieira, Daniela. Universidade de Sao Paulo; Brasil |
description |
We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143183 Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-2457 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143183 |
identifier_str_mv |
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-2457 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/2020-148-06/S0002-9939-2020-14471-1/ info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14471 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269869456752640 |
score |
13.13397 |