The algebra of bounded-type holomorphic functions on the ball

Autores
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Vieira, Daniela. Universidade de Sao Paulo; Brasil
Materia
HOLOMORPHIC FUNCTIONS
RIEMANN DOMAINS
SPECTRUM OF ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143183

id CONICETDig_8a10daac1e60f3a73c02ded7b938f381
oai_identifier_str oai:ri.conicet.gov.ar:11336/143183
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The algebra of bounded-type holomorphic functions on the ballCarando, Daniel GermánMuro, Luis Santiago MiguelVieira, DanielaHOLOMORPHIC FUNCTIONSRIEMANN DOMAINSSPECTRUM OF ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Vieira, Daniela. Universidade de Sao Paulo; BrasilAmerican Mathematical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143183Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-24570002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/2020-148-06/S0002-9939-2020-14471-1/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14471info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:40Zoai:ri.conicet.gov.ar:11336/143183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:40.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The algebra of bounded-type holomorphic functions on the ball
title The algebra of bounded-type holomorphic functions on the ball
spellingShingle The algebra of bounded-type holomorphic functions on the ball
Carando, Daniel Germán
HOLOMORPHIC FUNCTIONS
RIEMANN DOMAINS
SPECTRUM OF ALGEBRAS
title_short The algebra of bounded-type holomorphic functions on the ball
title_full The algebra of bounded-type holomorphic functions on the ball
title_fullStr The algebra of bounded-type holomorphic functions on the ball
title_full_unstemmed The algebra of bounded-type holomorphic functions on the ball
title_sort The algebra of bounded-type holomorphic functions on the ball
dc.creator.none.fl_str_mv Carando, Daniel Germán
Muro, Luis Santiago Miguel
Vieira, Daniela
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Muro, Luis Santiago Miguel
Vieira, Daniela
author_role author
author2 Muro, Luis Santiago Miguel
Vieira, Daniela
author2_role author
author
dc.subject.none.fl_str_mv HOLOMORPHIC FUNCTIONS
RIEMANN DOMAINS
SPECTRUM OF ALGEBRAS
topic HOLOMORPHIC FUNCTIONS
RIEMANN DOMAINS
SPECTRUM OF ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Vieira, Daniela. Universidade de Sao Paulo; Brasil
description We study the spectrum Mb(U) of the algebra of bounded-type holomorphic functions on a complete Reinhardt domain in a symmetrically regular Banach space E as an analytic manifold over the bidual of the space. In the case that U is the unit ball of ℓp, 1 < p < ∞, we prove that each connected component of Mb(Bℓp) naturally identifies with a ball of a certain radius. We also provide estimates for this radius and in many natural cases we have the precise value. As a consequence, we obtain that for connected components different from that of evaluations, these radii are strictly smaller than one, and can be arbitrarily small. We also show that for other Banach sequence spaces, connected components do not necessarily identify with balls.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143183
Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-2457
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143183
identifier_str_mv Carando, Daniel Germán; Muro, Luis Santiago Miguel; Vieira, Daniela; The algebra of bounded-type holomorphic functions on the ball; American Mathematical Society; Proceedings of the American Mathematical Society; 148; 6; 2-2020; 2447-2457
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/2020-148-06/S0002-9939-2020-14471-1/
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14471
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269869456752640
score 13.13397