Envelopes of holomorphy and extension of functions of bounded type
- Autores
- Carando, D.; Muro, S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Adv. Math. 2012;229(3):2098-2121
- Materia
-
Envelope of holomorphy
Holomorphic functions of bounded type
Riemann domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00018708_v229_n3_p2098_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_dc01eb3ec75c5080b8cf8c7f4786e3ba |
---|---|
oai_identifier_str |
paperaa:paper_00018708_v229_n3_p2098_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Envelopes of holomorphy and extension of functions of bounded typeCarando, D.Muro, S.Envelope of holomorphyHolomorphic functions of bounded typeRiemann domainsWe study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_CarandoAdv. Math. 2012;229(3):2098-2121reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00018708_v229_n3_p2098_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.426Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Envelopes of holomorphy and extension of functions of bounded type |
title |
Envelopes of holomorphy and extension of functions of bounded type |
spellingShingle |
Envelopes of holomorphy and extension of functions of bounded type Carando, D. Envelope of holomorphy Holomorphic functions of bounded type Riemann domains |
title_short |
Envelopes of holomorphy and extension of functions of bounded type |
title_full |
Envelopes of holomorphy and extension of functions of bounded type |
title_fullStr |
Envelopes of holomorphy and extension of functions of bounded type |
title_full_unstemmed |
Envelopes of holomorphy and extension of functions of bounded type |
title_sort |
Envelopes of holomorphy and extension of functions of bounded type |
dc.creator.none.fl_str_mv |
Carando, D. Muro, S. |
author |
Carando, D. |
author_facet |
Carando, D. Muro, S. |
author_role |
author |
author2 |
Muro, S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Envelope of holomorphy Holomorphic functions of bounded type Riemann domains |
topic |
Envelope of holomorphy Holomorphic functions of bounded type Riemann domains |
dc.description.none.fl_txt_mv |
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the extension of holomorphic functions of bounded type defined on an open subset of a Banach space to larger domains. For this, we first characterize the envelope of holomorphy of a Riemann domain over a Banach space, with respect to the algebra of bounded type holomorphic functions, in terms of the spectrum of the algebra. We then give a simple description of the envelopes of balanced open sets and relate the concepts of domain of holomorphy and polynomial convexity. We show that for bounded balanced sets, extensions to the envelope are always of bounded type, and that this does not necessarily hold for unbounded sets, answering a question posed by Hirschowitz in 1972. We also consider extensions to open subsets of the bidual, present some Banach-Stone type results and show some properties of the spectrum when the domain is the unit ball of ℓ p. © 2011 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v229_n3_p2098_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Adv. Math. 2012;229(3):2098-2121 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705302740992 |
score |
12.623145 |