Automatic Modulation Classification for low-power IoT applications
- Autores
- Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.
Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina - Materia
-
INTERNET OF THINGS
RADIO SPECTRUM ACCESS
AUTOMATIC MODULATION CLASSIFICATION
FEATURE EXTRACTION
MUTUAL INFORMATION
ARTIFICIAL NEURAL NETWORK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267590
Ver los metadatos del registro completo
id |
CONICETDig_c0100cfa70871b4a4a45fa1f5099f91b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267590 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic Modulation Classification for low-power IoT applicationsMondino Llermanos, Yasmín RayénCorral Briones, GracielaINTERNET OF THINGSRADIO SPECTRUM ACCESSAUTOMATIC MODULATION CLASSIFICATIONFEATURE EXTRACTIONMUTUAL INFORMATIONARTIFICIAL NEURAL NETWORKhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaInstitute of Electrical and Electronics Engineers2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267590Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-2121548-0992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:31Zoai:ri.conicet.gov.ar:11336/267590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:31.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic Modulation Classification for low-power IoT applications |
title |
Automatic Modulation Classification for low-power IoT applications |
spellingShingle |
Automatic Modulation Classification for low-power IoT applications Mondino Llermanos, Yasmín Rayén INTERNET OF THINGS RADIO SPECTRUM ACCESS AUTOMATIC MODULATION CLASSIFICATION FEATURE EXTRACTION MUTUAL INFORMATION ARTIFICIAL NEURAL NETWORK |
title_short |
Automatic Modulation Classification for low-power IoT applications |
title_full |
Automatic Modulation Classification for low-power IoT applications |
title_fullStr |
Automatic Modulation Classification for low-power IoT applications |
title_full_unstemmed |
Automatic Modulation Classification for low-power IoT applications |
title_sort |
Automatic Modulation Classification for low-power IoT applications |
dc.creator.none.fl_str_mv |
Mondino Llermanos, Yasmín Rayén Corral Briones, Graciela |
author |
Mondino Llermanos, Yasmín Rayén |
author_facet |
Mondino Llermanos, Yasmín Rayén Corral Briones, Graciela |
author_role |
author |
author2 |
Corral Briones, Graciela |
author2_role |
author |
dc.subject.none.fl_str_mv |
INTERNET OF THINGS RADIO SPECTRUM ACCESS AUTOMATIC MODULATION CLASSIFICATION FEATURE EXTRACTION MUTUAL INFORMATION ARTIFICIAL NEURAL NETWORK |
topic |
INTERNET OF THINGS RADIO SPECTRUM ACCESS AUTOMATIC MODULATION CLASSIFICATION FEATURE EXTRACTION MUTUAL INFORMATION ARTIFICIAL NEURAL NETWORK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset. Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina Fil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina |
description |
The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267590 Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-212 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267590 |
identifier_str_mv |
Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-212 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8267 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613452818022400 |
score |
13.070432 |