Automatic Modulation Classification for low-power IoT applications

Autores
Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.
Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Materia
INTERNET OF THINGS
RADIO SPECTRUM ACCESS
AUTOMATIC MODULATION CLASSIFICATION
FEATURE EXTRACTION
MUTUAL INFORMATION
ARTIFICIAL NEURAL NETWORK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267590

id CONICETDig_c0100cfa70871b4a4a45fa1f5099f91b
oai_identifier_str oai:ri.conicet.gov.ar:11336/267590
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automatic Modulation Classification for low-power IoT applicationsMondino Llermanos, Yasmín RayénCorral Briones, GracielaINTERNET OF THINGSRADIO SPECTRUM ACCESSAUTOMATIC MODULATION CLASSIFICATIONFEATURE EXTRACTIONMUTUAL INFORMATIONARTIFICIAL NEURAL NETWORKhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaInstitute of Electrical and Electronics Engineers2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267590Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-2121548-0992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:31Zoai:ri.conicet.gov.ar:11336/267590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:31.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automatic Modulation Classification for low-power IoT applications
title Automatic Modulation Classification for low-power IoT applications
spellingShingle Automatic Modulation Classification for low-power IoT applications
Mondino Llermanos, Yasmín Rayén
INTERNET OF THINGS
RADIO SPECTRUM ACCESS
AUTOMATIC MODULATION CLASSIFICATION
FEATURE EXTRACTION
MUTUAL INFORMATION
ARTIFICIAL NEURAL NETWORK
title_short Automatic Modulation Classification for low-power IoT applications
title_full Automatic Modulation Classification for low-power IoT applications
title_fullStr Automatic Modulation Classification for low-power IoT applications
title_full_unstemmed Automatic Modulation Classification for low-power IoT applications
title_sort Automatic Modulation Classification for low-power IoT applications
dc.creator.none.fl_str_mv Mondino Llermanos, Yasmín Rayén
Corral Briones, Graciela
author Mondino Llermanos, Yasmín Rayén
author_facet Mondino Llermanos, Yasmín Rayén
Corral Briones, Graciela
author_role author
author2 Corral Briones, Graciela
author2_role author
dc.subject.none.fl_str_mv INTERNET OF THINGS
RADIO SPECTRUM ACCESS
AUTOMATIC MODULATION CLASSIFICATION
FEATURE EXTRACTION
MUTUAL INFORMATION
ARTIFICIAL NEURAL NETWORK
topic INTERNET OF THINGS
RADIO SPECTRUM ACCESS
AUTOMATIC MODULATION CLASSIFICATION
FEATURE EXTRACTION
MUTUAL INFORMATION
ARTIFICIAL NEURAL NETWORK
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.
Fil: Mondino Llermanos, Yasmín Rayén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Corral Briones, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
description The Internet of Things (IoT) has swiftly become one of the most important technologies in recent years. Radio spectrum access represents a stern challenge for the IoT as a consequence of the increased use of connected devices. This is particularly true for IoT devices operating in the unlicensed band where the huge demand for wireless connectivity will require techniques that use the spectrum efficiently. Avoiding training sequences enables a more efficient spectrum usage and has the additional advantage of reducing the power consumption of IoT devices, but it requires modulation identification mechanisms. This paper presents a simple yet efficient method to classify received signals according to their modulation type. We propose the application of a single hidden layer neural network with a small number of trainable parameters for performing the classification between seven different modulation types. The designed classifier achieves a maximum accuracy of 95% when the signal-to-noise ratio (SNR) of the input data is 12 dB, and in the presence of multi-path fading, sample rate offset and carrier frequency offset.
publishDate 2024
dc.date.none.fl_str_mv 2024-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267590
Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-212
1548-0992
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267590
identifier_str_mv Mondino Llermanos, Yasmín Rayén; Corral Briones, Graciela; Automatic Modulation Classification for low-power IoT applications; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 22; 3; 2-2024; 204-212
1548-0992
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/8267
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613452818022400
score 13.070432