Machine Learning-Based Tomato Fruit Shape Classification System
- Autores
- Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.
Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Nankar, Amol N.. University of Georgia; Estados Unidos
Fil: Grozeva, Stanislava. No especifíca;
Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina - Materia
-
morphology recognition
feature extraction
support vector machine - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262561
Ver los metadatos del registro completo
id |
CONICETDig_468882fe48c8af051c3c9a0cbaf733b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262561 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Machine Learning-Based Tomato Fruit Shape Classification SystemVazquez, Dana ValeriaSpetale, Flavio EzequielNankar, Amol N.Grozeva, StanislavaRodríguez, Gustavo Rubénmorphology recognitionfeature extractionsupport vector machinehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Nankar, Amol N.. University of Georgia; Estados UnidosFil: Grozeva, Stanislava. No especifíca;Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaMDPI2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262561Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-182223-7747CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13172357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:20Zoai:ri.conicet.gov.ar:11336/262561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:21.17CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Machine Learning-Based Tomato Fruit Shape Classification System |
title |
Machine Learning-Based Tomato Fruit Shape Classification System |
spellingShingle |
Machine Learning-Based Tomato Fruit Shape Classification System Vazquez, Dana Valeria morphology recognition feature extraction support vector machine |
title_short |
Machine Learning-Based Tomato Fruit Shape Classification System |
title_full |
Machine Learning-Based Tomato Fruit Shape Classification System |
title_fullStr |
Machine Learning-Based Tomato Fruit Shape Classification System |
title_full_unstemmed |
Machine Learning-Based Tomato Fruit Shape Classification System |
title_sort |
Machine Learning-Based Tomato Fruit Shape Classification System |
dc.creator.none.fl_str_mv |
Vazquez, Dana Valeria Spetale, Flavio Ezequiel Nankar, Amol N. Grozeva, Stanislava Rodríguez, Gustavo Rubén |
author |
Vazquez, Dana Valeria |
author_facet |
Vazquez, Dana Valeria Spetale, Flavio Ezequiel Nankar, Amol N. Grozeva, Stanislava Rodríguez, Gustavo Rubén |
author_role |
author |
author2 |
Spetale, Flavio Ezequiel Nankar, Amol N. Grozeva, Stanislava Rodríguez, Gustavo Rubén |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
morphology recognition feature extraction support vector machine |
topic |
morphology recognition feature extraction support vector machine |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry. Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Nankar, Amol N.. University of Georgia; Estados Unidos Fil: Grozeva, Stanislava. No especifíca; Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina |
description |
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262561 Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18 2223-7747 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262561 |
identifier_str_mv |
Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18 2223-7747 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357 info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13172357 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269457522622464 |
score |
13.13397 |