Machine Learning-Based Tomato Fruit Shape Classification System

Autores
Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.
Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Nankar, Amol N.. University of Georgia; Estados Unidos
Fil: Grozeva, Stanislava. No especifíca;
Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Materia
morphology recognition
feature extraction
support vector machine
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/262561

id CONICETDig_468882fe48c8af051c3c9a0cbaf733b3
oai_identifier_str oai:ri.conicet.gov.ar:11336/262561
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Machine Learning-Based Tomato Fruit Shape Classification SystemVazquez, Dana ValeriaSpetale, Flavio EzequielNankar, Amol N.Grozeva, StanislavaRodríguez, Gustavo Rubénmorphology recognitionfeature extractionsupport vector machinehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Nankar, Amol N.. University of Georgia; Estados UnidosFil: Grozeva, Stanislava. No especifíca;Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaMDPI2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262561Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-182223-7747CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13172357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:20Zoai:ri.conicet.gov.ar:11336/262561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:21.17CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Machine Learning-Based Tomato Fruit Shape Classification System
title Machine Learning-Based Tomato Fruit Shape Classification System
spellingShingle Machine Learning-Based Tomato Fruit Shape Classification System
Vazquez, Dana Valeria
morphology recognition
feature extraction
support vector machine
title_short Machine Learning-Based Tomato Fruit Shape Classification System
title_full Machine Learning-Based Tomato Fruit Shape Classification System
title_fullStr Machine Learning-Based Tomato Fruit Shape Classification System
title_full_unstemmed Machine Learning-Based Tomato Fruit Shape Classification System
title_sort Machine Learning-Based Tomato Fruit Shape Classification System
dc.creator.none.fl_str_mv Vazquez, Dana Valeria
Spetale, Flavio Ezequiel
Nankar, Amol N.
Grozeva, Stanislava
Rodríguez, Gustavo Rubén
author Vazquez, Dana Valeria
author_facet Vazquez, Dana Valeria
Spetale, Flavio Ezequiel
Nankar, Amol N.
Grozeva, Stanislava
Rodríguez, Gustavo Rubén
author_role author
author2 Spetale, Flavio Ezequiel
Nankar, Amol N.
Grozeva, Stanislava
Rodríguez, Gustavo Rubén
author2_role author
author
author
author
dc.subject.none.fl_str_mv morphology recognition
feature extraction
support vector machine
topic morphology recognition
feature extraction
support vector machine
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.
Fil: Vazquez, Dana Valeria. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Spetale, Flavio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Nankar, Amol N.. University of Georgia; Estados Unidos
Fil: Grozeva, Stanislava. No especifíca;
Fil: Rodríguez, Gustavo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
description Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/262561
Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18
2223-7747
CONICET Digital
CONICET
url http://hdl.handle.net/11336/262561
identifier_str_mv Vazquez, Dana Valeria; Spetale, Flavio Ezequiel; Nankar, Amol N.; Grozeva, Stanislava; Rodríguez, Gustavo Rubén; Machine Learning-Based Tomato Fruit Shape Classification System; MDPI; Plants; 13; 17; 8-2024; 1-18
2223-7747
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2223-7747/13/17/2357
info:eu-repo/semantics/altIdentifier/doi/10.3390/plants13172357
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269457522622464
score 13.13397