Information Theory based Feature Selection for Customer Classification
- Autores
- Barraza, Néstor Rubén; Moro, Sergio; Ferreyra, Marcelo; de la Peña, Adolfo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The application of Information Theory techniques in customer feature selection is analyzed. This method, usually called information gain has been demonstrated to be simple and fast for feature selection. The important concept of mutual information, originally introduced to analyze and model a noisy channel is used in order to measure relations between characteristics of given customers. An application to a bank customers data set of telemarketing calls for selling bank long-term deposits is shown.We show that with our method, 80% of the subscribers can be reached by contacting just the better half of the classified clients.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
Segmentation
mutual information
Feature evaluation and selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56974
Ver los metadatos del registro completo
id |
SEDICI_af78d4a731040a66250482ded39db72a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56974 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Information Theory based Feature Selection for Customer ClassificationBarraza, Néstor RubénMoro, SergioFerreyra, Marcelode la Peña, AdolfoCiencias InformáticasSegmentationmutual informationFeature evaluation and selectionThe application of Information Theory techniques in customer feature selection is analyzed. This method, usually called information gain has been demonstrated to be simple and fast for feature selection. The important concept of mutual information, originally introduced to analyze and model a noisy channel is used in order to measure relations between characteristics of given customers. An application to a bank customers data set of telemarketing calls for selling bank long-term deposits is shown.We show that with our method, 80% of the subscribers can be reached by contacting just the better half of the classified clients.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-8http://sedici.unlp.edu.ar/handle/10915/56974enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-07_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:13Zoai:sedici.unlp.edu.ar:10915/56974Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:13.205SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Information Theory based Feature Selection for Customer Classification |
title |
Information Theory based Feature Selection for Customer Classification |
spellingShingle |
Information Theory based Feature Selection for Customer Classification Barraza, Néstor Rubén Ciencias Informáticas Segmentation mutual information Feature evaluation and selection |
title_short |
Information Theory based Feature Selection for Customer Classification |
title_full |
Information Theory based Feature Selection for Customer Classification |
title_fullStr |
Information Theory based Feature Selection for Customer Classification |
title_full_unstemmed |
Information Theory based Feature Selection for Customer Classification |
title_sort |
Information Theory based Feature Selection for Customer Classification |
dc.creator.none.fl_str_mv |
Barraza, Néstor Rubén Moro, Sergio Ferreyra, Marcelo de la Peña, Adolfo |
author |
Barraza, Néstor Rubén |
author_facet |
Barraza, Néstor Rubén Moro, Sergio Ferreyra, Marcelo de la Peña, Adolfo |
author_role |
author |
author2 |
Moro, Sergio Ferreyra, Marcelo de la Peña, Adolfo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Segmentation mutual information Feature evaluation and selection |
topic |
Ciencias Informáticas Segmentation mutual information Feature evaluation and selection |
dc.description.none.fl_txt_mv |
The application of Information Theory techniques in customer feature selection is analyzed. This method, usually called information gain has been demonstrated to be simple and fast for feature selection. The important concept of mutual information, originally introduced to analyze and model a noisy channel is used in order to measure relations between characteristics of given customers. An application to a bank customers data set of telemarketing calls for selling bank long-term deposits is shown.We show that with our method, 80% of the subscribers can be reached by contacting just the better half of the classified clients. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
The application of Information Theory techniques in customer feature selection is analyzed. This method, usually called information gain has been demonstrated to be simple and fast for feature selection. The important concept of mutual information, originally introduced to analyze and model a noisy channel is used in order to measure relations between characteristics of given customers. An application to a bank customers data set of telemarketing calls for selling bank long-term deposits is shown.We show that with our method, 80% of the subscribers can be reached by contacting just the better half of the classified clients. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56974 |
url |
http://sedici.unlp.edu.ar/handle/10915/56974 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-07_0.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 1-8 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615933044195328 |
score |
13.070432 |