Multifractal characterisation and classification of bread crumb digital images
- Autores
- Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread (baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from different types. Also, high correlations were found between some of these parameters and the porosity, coarseness, and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have. The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs.
Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
Fractal
Multifractal
Image Analysis
Image Classification
Feature Extraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15160
Ver los metadatos del registro completo
id |
CONICETDig_9df2a0f20be7df2073d0761384d87b11 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15160 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multifractal characterisation and classification of bread crumb digital imagesBaravalle, Rodrigo GuillermoDelrieux, Claudio AugustoGómez, Juan CarlosFractalMultifractalImage AnalysisImage ClassificationFeature Extractionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread (baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from different types. Also, high correlations were found between some of these parameters and the porosity, coarseness, and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have. The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs.Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; ArgentinaFil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15160Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Multifractal characterisation and classification of bread crumb digital images; Springer; EURASIP Journal on Image and Video Processing; 2015; 9; 12-2015; 1-101687-5281enginfo:eu-repo/semantics/altIdentifier/url/http://jivp.eurasipjournals.com/content/2015/1/9info:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-015-0063-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186/s13640-015-0063-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:38Zoai:ri.conicet.gov.ar:11336/15160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:39.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multifractal characterisation and classification of bread crumb digital images |
title |
Multifractal characterisation and classification of bread crumb digital images |
spellingShingle |
Multifractal characterisation and classification of bread crumb digital images Baravalle, Rodrigo Guillermo Fractal Multifractal Image Analysis Image Classification Feature Extraction |
title_short |
Multifractal characterisation and classification of bread crumb digital images |
title_full |
Multifractal characterisation and classification of bread crumb digital images |
title_fullStr |
Multifractal characterisation and classification of bread crumb digital images |
title_full_unstemmed |
Multifractal characterisation and classification of bread crumb digital images |
title_sort |
Multifractal characterisation and classification of bread crumb digital images |
dc.creator.none.fl_str_mv |
Baravalle, Rodrigo Guillermo Delrieux, Claudio Augusto Gómez, Juan Carlos |
author |
Baravalle, Rodrigo Guillermo |
author_facet |
Baravalle, Rodrigo Guillermo Delrieux, Claudio Augusto Gómez, Juan Carlos |
author_role |
author |
author2 |
Delrieux, Claudio Augusto Gómez, Juan Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Fractal Multifractal Image Analysis Image Classification Feature Extraction |
topic |
Fractal Multifractal Image Analysis Image Classification Feature Extraction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread (baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from different types. Also, high correlations were found between some of these parameters and the porosity, coarseness, and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have. The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs. Fil: Baravalle, Rodrigo Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina Fil: Gómez, Juan Carlos. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread (baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from different types. Also, high correlations were found between some of these parameters and the porosity, coarseness, and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have. The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15160 Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Multifractal characterisation and classification of bread crumb digital images; Springer; EURASIP Journal on Image and Video Processing; 2015; 9; 12-2015; 1-10 1687-5281 |
url |
http://hdl.handle.net/11336/15160 |
identifier_str_mv |
Baravalle, Rodrigo Guillermo; Delrieux, Claudio Augusto; Gómez, Juan Carlos; Multifractal characterisation and classification of bread crumb digital images; Springer; EURASIP Journal on Image and Video Processing; 2015; 9; 12-2015; 1-10 1687-5281 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jivp.eurasipjournals.com/content/2015/1/9 info:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-015-0063-8 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186/s13640-015-0063-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979963176747008 |
score |
12.993085 |