Automatic classification of legumes using leaf vein image features
- Autores
- Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; Granitto, Pablo Miguel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina del Valle. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
LEAF VEIN ANALYSIS
LEAF VEIN FEATURES
LEAF VEIN IMAGES
LEGUME CLASSIFICATION
UNCONSTRAINED HIT-OR-MISS TRANSFORM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3198
Ver los metadatos del registro completo
id |
CONICETDig_a84e56385e80dfa12260c8c558f401c4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3198 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic classification of legumes using leaf vein image featuresLarese, Monica GracielaNamias, RafaelCraviotto, Roque MarioArango, Miriam RaquelGallo, Carina del ValleGranitto, Pablo MiguelLEAF VEIN ANALYSISLEAF VEIN FEATURESLEAF VEIN IMAGESLEGUME CLASSIFICATIONUNCONSTRAINED HIT-OR-MISS TRANSFORMhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina del Valle. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaElsevier2013-06-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3198Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; et al.; Automatic classification of legumes using leaf vein image features; Elsevier; Pattern Recognition; 47; 1; 21-6-2013; 158-1680031-3203enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002641info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:03:08Zoai:ri.conicet.gov.ar:11336/3198instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:03:09.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic classification of legumes using leaf vein image features |
title |
Automatic classification of legumes using leaf vein image features |
spellingShingle |
Automatic classification of legumes using leaf vein image features Larese, Monica Graciela LEAF VEIN ANALYSIS LEAF VEIN FEATURES LEAF VEIN IMAGES LEGUME CLASSIFICATION UNCONSTRAINED HIT-OR-MISS TRANSFORM |
title_short |
Automatic classification of legumes using leaf vein image features |
title_full |
Automatic classification of legumes using leaf vein image features |
title_fullStr |
Automatic classification of legumes using leaf vein image features |
title_full_unstemmed |
Automatic classification of legumes using leaf vein image features |
title_sort |
Automatic classification of legumes using leaf vein image features |
dc.creator.none.fl_str_mv |
Larese, Monica Graciela Namias, Rafael Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina del Valle Granitto, Pablo Miguel |
author |
Larese, Monica Graciela |
author_facet |
Larese, Monica Graciela Namias, Rafael Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina del Valle Granitto, Pablo Miguel |
author_role |
author |
author2 |
Namias, Rafael Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina del Valle Granitto, Pablo Miguel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
LEAF VEIN ANALYSIS LEAF VEIN FEATURES LEAF VEIN IMAGES LEGUME CLASSIFICATION UNCONSTRAINED HIT-OR-MISS TRANSFORM |
topic |
LEAF VEIN ANALYSIS LEAF VEIN FEATURES LEAF VEIN IMAGES LEGUME CLASSIFICATION UNCONSTRAINED HIT-OR-MISS TRANSFORM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition. Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Gallo, Carina del Valle. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3198 Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; et al.; Automatic classification of legumes using leaf vein image features; Elsevier; Pattern Recognition; 47; 1; 21-6-2013; 158-168 0031-3203 |
url |
http://hdl.handle.net/11336/3198 |
identifier_str_mv |
Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; et al.; Automatic classification of legumes using leaf vein image features; Elsevier; Pattern Recognition; 47; 1; 21-6-2013; 158-168 0031-3203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002641 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.06.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083173757222912 |
score |
13.22299 |