A nonlocal 1-Laplacian problem and median values
- Autores
- Mazón, José M.; Pérez Pérez, Maria Teresa; Rossi, Julio Daniel; Toledo, Julián
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study solutions to a nonlocal 1-Laplacian equation given by − Z ΩJ J(x − y) uψ(y) − u(x) |uψ(y) − u(x)| dy = 0 for x ∈ Ω with u(x) = ψ(x) for x ∈ ΩJ \ Ω. We introduce two notions of solution and prove that the weaker of the two concepts is equivalent to a nonlocal median value property, where the median is determined by a measure related to J. We also show that solutions in the stronger sense are nonlocal analogues of local least gradient functions, in the sense that they minimize a nonlocal functional. In addition, we prove that solutions in the stronger sense converge to least gradient solutions when the kernel J is appropriately rescaled.
Fil: Mazón, José M.. Universidad de Valencia; España
Fil: Pérez Pérez, Maria Teresa. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Toledo, Julián. Universidad de Valencia; España - Materia
-
1-laplacian
Mean value
Least gradient functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19454
Ver los metadatos del registro completo
id |
CONICETDig_bece835e23005ef473de4fefc51d722a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19454 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonlocal 1-Laplacian problem and median valuesMazón, José M.Pérez Pérez, Maria TeresaRossi, Julio DanielToledo, Julián1-laplacianMean valueLeast gradient functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study solutions to a nonlocal 1-Laplacian equation given by − Z ΩJ J(x − y) uψ(y) − u(x) |uψ(y) − u(x)| dy = 0 for x ∈ Ω with u(x) = ψ(x) for x ∈ ΩJ \ Ω. We introduce two notions of solution and prove that the weaker of the two concepts is equivalent to a nonlocal median value property, where the median is determined by a measure related to J. We also show that solutions in the stronger sense are nonlocal analogues of local least gradient functions, in the sense that they minimize a nonlocal functional. In addition, we prove that solutions in the stronger sense converge to least gradient solutions when the kernel J is appropriately rescaled.Fil: Mazón, José M.. Universidad de Valencia; EspañaFil: Pérez Pérez, Maria Teresa. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toledo, Julián. Universidad de Valencia; EspañaUniversitat Autònoma de Barcelona2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19454Mazón, José M.; Pérez Pérez, Maria Teresa; Rossi, Julio Daniel; Toledo, Julián; A nonlocal 1-Laplacian problem and median values; Universitat Autònoma de Barcelona; Publicacions Matematiques; 60; 1; -1-2016; 27-530214-14932014-4350CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60116_02info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60116_02info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:23Zoai:ri.conicet.gov.ar:11336/19454instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:23.966CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonlocal 1-Laplacian problem and median values |
title |
A nonlocal 1-Laplacian problem and median values |
spellingShingle |
A nonlocal 1-Laplacian problem and median values Mazón, José M. 1-laplacian Mean value Least gradient functions |
title_short |
A nonlocal 1-Laplacian problem and median values |
title_full |
A nonlocal 1-Laplacian problem and median values |
title_fullStr |
A nonlocal 1-Laplacian problem and median values |
title_full_unstemmed |
A nonlocal 1-Laplacian problem and median values |
title_sort |
A nonlocal 1-Laplacian problem and median values |
dc.creator.none.fl_str_mv |
Mazón, José M. Pérez Pérez, Maria Teresa Rossi, Julio Daniel Toledo, Julián |
author |
Mazón, José M. |
author_facet |
Mazón, José M. Pérez Pérez, Maria Teresa Rossi, Julio Daniel Toledo, Julián |
author_role |
author |
author2 |
Pérez Pérez, Maria Teresa Rossi, Julio Daniel Toledo, Julián |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
1-laplacian Mean value Least gradient functions |
topic |
1-laplacian Mean value Least gradient functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study solutions to a nonlocal 1-Laplacian equation given by − Z ΩJ J(x − y) uψ(y) − u(x) |uψ(y) − u(x)| dy = 0 for x ∈ Ω with u(x) = ψ(x) for x ∈ ΩJ \ Ω. We introduce two notions of solution and prove that the weaker of the two concepts is equivalent to a nonlocal median value property, where the median is determined by a measure related to J. We also show that solutions in the stronger sense are nonlocal analogues of local least gradient functions, in the sense that they minimize a nonlocal functional. In addition, we prove that solutions in the stronger sense converge to least gradient solutions when the kernel J is appropriately rescaled. Fil: Mazón, José M.. Universidad de Valencia; España Fil: Pérez Pérez, Maria Teresa. Universidad Autónoma de Madrid; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Toledo, Julián. Universidad de Valencia; España |
description |
In this paper, we study solutions to a nonlocal 1-Laplacian equation given by − Z ΩJ J(x − y) uψ(y) − u(x) |uψ(y) − u(x)| dy = 0 for x ∈ Ω with u(x) = ψ(x) for x ∈ ΩJ \ Ω. We introduce two notions of solution and prove that the weaker of the two concepts is equivalent to a nonlocal median value property, where the median is determined by a measure related to J. We also show that solutions in the stronger sense are nonlocal analogues of local least gradient functions, in the sense that they minimize a nonlocal functional. In addition, we prove that solutions in the stronger sense converge to least gradient solutions when the kernel J is appropriately rescaled. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19454 Mazón, José M.; Pérez Pérez, Maria Teresa; Rossi, Julio Daniel; Toledo, Julián; A nonlocal 1-Laplacian problem and median values; Universitat Autònoma de Barcelona; Publicacions Matematiques; 60; 1; -1-2016; 27-53 0214-1493 2014-4350 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19454 |
identifier_str_mv |
Mazón, José M.; Pérez Pérez, Maria Teresa; Rossi, Julio Daniel; Toledo, Julián; A nonlocal 1-Laplacian problem and median values; Universitat Autònoma de Barcelona; Publicacions Matematiques; 60; 1; -1-2016; 27-53 0214-1493 2014-4350 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_60116_02 info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT_60116_02 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613101826080768 |
score |
13.070432 |