Parabolic mean values and maximal estimates for gradients of temperatures

Autores
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Iaffei, Bibiana Raquel
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We aim to prove inequalities of the form | δk - λ (x, t) ∇k u (x, t) | ≤ C MR+- MD#, λ, k u (x, t) for solutions of frac(∂ u, ∂ t) = Δ u on a domain Ω = D × R+, where δ (x, t) is the parabolic distance of (x, t) to parabolic boundary of Ω, MR+- is the one-sided Hardy-Littlewood maximal operator in the time variable on R+, MD#, λ, k is a Calderón-Scott type d-dimensional elliptic maximal operator in the space variable on the domain D in Rd, and 0 < λ < k < λ + d. As a consequence, when D is a bounded Lipschitz domain, we obtain estimates for the Lp (Ω) norm of δ2 n - λ (∇2, 1)n u in terms of some mixed norm ∫0∞ {norm of matrix} u (ṡ, t) {norm of matrix}Bpλ, p (D)p d t for the space Lp (R+, Bpλ, p (D)) with {norm of matrix} ṡ {norm of matrix}Bpλ, p (D) denotes the Besov norm in the space variable x and where ∇2, 1 = (∇2, frac(∂, ∂ t)).
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina
Materia
GRADIENT ESTIMATES
HEAT EQUATION
MAXIMAL OPERATORS
MEAN VALUE FORMULA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84272

id CONICETDig_074379c64fc8fe0ca03e242323005e3d
oai_identifier_str oai:ri.conicet.gov.ar:11336/84272
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Parabolic mean values and maximal estimates for gradients of temperaturesAimar, Hugo AlejandroGomez, Ivana DanielaIaffei, Bibiana RaquelGRADIENT ESTIMATESHEAT EQUATIONMAXIMAL OPERATORSMEAN VALUE FORMULAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We aim to prove inequalities of the form | δk - λ (x, t) ∇k u (x, t) | ≤ C MR+- MD#, λ, k u (x, t) for solutions of frac(∂ u, ∂ t) = Δ u on a domain Ω = D × R+, where δ (x, t) is the parabolic distance of (x, t) to parabolic boundary of Ω, MR+- is the one-sided Hardy-Littlewood maximal operator in the time variable on R+, MD#, λ, k is a Calderón-Scott type d-dimensional elliptic maximal operator in the space variable on the domain D in Rd, and 0 < λ < k < λ + d. As a consequence, when D is a bounded Lipschitz domain, we obtain estimates for the Lp (Ω) norm of δ2 n - λ (∇2, 1)n u in terms of some mixed norm ∫0∞ {norm of matrix} u (ṡ, t) {norm of matrix}Bpλ, p (D)p d t for the space Lp (R+, Bpλ, p (D)) with {norm of matrix} ṡ {norm of matrix}Bpλ, p (D) denotes the Besov norm in the space variable x and where ∇2, 1 = (∇2, frac(∂, ∂ t)).Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; ArgentinaAcademic Press Inc Elsevier Science2008-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84272Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Iaffei, Bibiana Raquel; Parabolic mean values and maximal estimates for gradients of temperatures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 255; 8; 10-2008; 1939-19560022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:00Zoai:ri.conicet.gov.ar:11336/84272instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:00.331CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Parabolic mean values and maximal estimates for gradients of temperatures
title Parabolic mean values and maximal estimates for gradients of temperatures
spellingShingle Parabolic mean values and maximal estimates for gradients of temperatures
Aimar, Hugo Alejandro
GRADIENT ESTIMATES
HEAT EQUATION
MAXIMAL OPERATORS
MEAN VALUE FORMULA
title_short Parabolic mean values and maximal estimates for gradients of temperatures
title_full Parabolic mean values and maximal estimates for gradients of temperatures
title_fullStr Parabolic mean values and maximal estimates for gradients of temperatures
title_full_unstemmed Parabolic mean values and maximal estimates for gradients of temperatures
title_sort Parabolic mean values and maximal estimates for gradients of temperatures
dc.creator.none.fl_str_mv Aimar, Hugo Alejandro
Gomez, Ivana Daniela
Iaffei, Bibiana Raquel
author Aimar, Hugo Alejandro
author_facet Aimar, Hugo Alejandro
Gomez, Ivana Daniela
Iaffei, Bibiana Raquel
author_role author
author2 Gomez, Ivana Daniela
Iaffei, Bibiana Raquel
author2_role author
author
dc.subject.none.fl_str_mv GRADIENT ESTIMATES
HEAT EQUATION
MAXIMAL OPERATORS
MEAN VALUE FORMULA
topic GRADIENT ESTIMATES
HEAT EQUATION
MAXIMAL OPERATORS
MEAN VALUE FORMULA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We aim to prove inequalities of the form | δk - λ (x, t) ∇k u (x, t) | ≤ C MR+- MD#, λ, k u (x, t) for solutions of frac(∂ u, ∂ t) = Δ u on a domain Ω = D × R+, where δ (x, t) is the parabolic distance of (x, t) to parabolic boundary of Ω, MR+- is the one-sided Hardy-Littlewood maximal operator in the time variable on R+, MD#, λ, k is a Calderón-Scott type d-dimensional elliptic maximal operator in the space variable on the domain D in Rd, and 0 < λ < k < λ + d. As a consequence, when D is a bounded Lipschitz domain, we obtain estimates for the Lp (Ω) norm of δ2 n - λ (∇2, 1)n u in terms of some mixed norm ∫0∞ {norm of matrix} u (ṡ, t) {norm of matrix}Bpλ, p (D)p d t for the space Lp (R+, Bpλ, p (D)) with {norm of matrix} ṡ {norm of matrix}Bpλ, p (D) denotes the Besov norm in the space variable x and where ∇2, 1 = (∇2, frac(∂, ∂ t)).
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Universidad Nacional del Litoral; Argentina
description We aim to prove inequalities of the form | δk - λ (x, t) ∇k u (x, t) | ≤ C MR+- MD#, λ, k u (x, t) for solutions of frac(∂ u, ∂ t) = Δ u on a domain Ω = D × R+, where δ (x, t) is the parabolic distance of (x, t) to parabolic boundary of Ω, MR+- is the one-sided Hardy-Littlewood maximal operator in the time variable on R+, MD#, λ, k is a Calderón-Scott type d-dimensional elliptic maximal operator in the space variable on the domain D in Rd, and 0 < λ < k < λ + d. As a consequence, when D is a bounded Lipschitz domain, we obtain estimates for the Lp (Ω) norm of δ2 n - λ (∇2, 1)n u in terms of some mixed norm ∫0∞ {norm of matrix} u (ṡ, t) {norm of matrix}Bpλ, p (D)p d t for the space Lp (R+, Bpλ, p (D)) with {norm of matrix} ṡ {norm of matrix}Bpλ, p (D) denotes the Besov norm in the space variable x and where ∇2, 1 = (∇2, frac(∂, ∂ t)).
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84272
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Iaffei, Bibiana Raquel; Parabolic mean values and maximal estimates for gradients of temperatures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 255; 8; 10-2008; 1939-1956
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84272
identifier_str_mv Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Iaffei, Bibiana Raquel; Parabolic mean values and maximal estimates for gradients of temperatures; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 255; 8; 10-2008; 1939-1956
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2008.06.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614308148805632
score 13.070432