An asymptotic mean value characterization for p-harmonic functions
- Autores
- Manfredi, Juan J.; Parviainen, Mikko; Rossi, Julio Daniel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to ∆pu = div(|∇u| p−2∇u) = 0 with 1 < p ≤ ∞ in a domain Ω if and only if the expansion u(x) = α 2 max Bε(x) u + min Bε(x) u + β |Bε(x)| Bε(x) u dy + o(ε2) holds as ε → 0 for x ∈ Ω in a weak sense, which we call the viscosity sense. Here the coefficients α, β are determined by α + β = 1 and α/β = (p − 2)/(N + 2).
Fil: Manfredi, Juan J.. No especifíca;
Fil: Parviainen, Mikko. No especifíca;
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Mean Value Properties
P-Laplacian
Infinity Laplacian
Viscosity Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16396
Ver los metadatos del registro completo
| id |
CONICETDig_bfe690d3a5ed708485136a174df2175a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16396 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
An asymptotic mean value characterization for p-harmonic functionsManfredi, Juan J.Parviainen, MikkoRossi, Julio DanielMean Value PropertiesP-LaplacianInfinity LaplacianViscosity Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to ∆pu = div(|∇u| p−2∇u) = 0 with 1 < p ≤ ∞ in a domain Ω if and only if the expansion u(x) = α 2 max Bε(x) u + min Bε(x) u + β |Bε(x)| Bε(x) u dy + o(ε2) holds as ε → 0 for x ∈ Ω in a weak sense, which we call the viscosity sense. Here the coefficients α, β are determined by α + β = 1 and α/β = (p − 2)/(N + 2).Fil: Manfredi, Juan J.. No especifíca;Fil: Parviainen, Mikko. No especifíca;Fil: Rossi, Julio Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16396Manfredi, Juan J.; Parviainen, Mikko; Rossi, Julio Daniel; An asymptotic mean value characterization for p-harmonic functions; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 881-8890002-99391088-6826enginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-10183-1info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-03/S0002-9939-09-10183-1/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:10:08Zoai:ri.conicet.gov.ar:11336/16396instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:10:08.328CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
An asymptotic mean value characterization for p-harmonic functions |
| title |
An asymptotic mean value characterization for p-harmonic functions |
| spellingShingle |
An asymptotic mean value characterization for p-harmonic functions Manfredi, Juan J. Mean Value Properties P-Laplacian Infinity Laplacian Viscosity Solutions |
| title_short |
An asymptotic mean value characterization for p-harmonic functions |
| title_full |
An asymptotic mean value characterization for p-harmonic functions |
| title_fullStr |
An asymptotic mean value characterization for p-harmonic functions |
| title_full_unstemmed |
An asymptotic mean value characterization for p-harmonic functions |
| title_sort |
An asymptotic mean value characterization for p-harmonic functions |
| dc.creator.none.fl_str_mv |
Manfredi, Juan J. Parviainen, Mikko Rossi, Julio Daniel |
| author |
Manfredi, Juan J. |
| author_facet |
Manfredi, Juan J. Parviainen, Mikko Rossi, Julio Daniel |
| author_role |
author |
| author2 |
Parviainen, Mikko Rossi, Julio Daniel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Mean Value Properties P-Laplacian Infinity Laplacian Viscosity Solutions |
| topic |
Mean Value Properties P-Laplacian Infinity Laplacian Viscosity Solutions |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to ∆pu = div(|∇u| p−2∇u) = 0 with 1 < p ≤ ∞ in a domain Ω if and only if the expansion u(x) = α 2 max Bε(x) u + min Bε(x) u + β |Bε(x)| Bε(x) u dy + o(ε2) holds as ε → 0 for x ∈ Ω in a weak sense, which we call the viscosity sense. Here the coefficients α, β are determined by α + β = 1 and α/β = (p − 2)/(N + 2). Fil: Manfredi, Juan J.. No especifíca; Fil: Parviainen, Mikko. No especifíca; Fil: Rossi, Julio Daniel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We characterize p-harmonic functions in terms of an asymptotic mean value property. A p-harmonic function u is a viscosity solution to ∆pu = div(|∇u| p−2∇u) = 0 with 1 < p ≤ ∞ in a domain Ω if and only if the expansion u(x) = α 2 max Bε(x) u + min Bε(x) u + β |Bε(x)| Bε(x) u dy + o(ε2) holds as ε → 0 for x ∈ Ω in a weak sense, which we call the viscosity sense. Here the coefficients α, β are determined by α + β = 1 and α/β = (p − 2)/(N + 2). |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16396 Manfredi, Juan J.; Parviainen, Mikko; Rossi, Julio Daniel; An asymptotic mean value characterization for p-harmonic functions; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 881-889 0002-9939 1088-6826 |
| url |
http://hdl.handle.net/11336/16396 |
| identifier_str_mv |
Manfredi, Juan J.; Parviainen, Mikko; Rossi, Julio Daniel; An asymptotic mean value characterization for p-harmonic functions; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 881-889 0002-9939 1088-6826 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-10183-1 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-03/S0002-9939-09-10183-1/home.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977622582067200 |
| score |
13.121305 |