A nonlocal p-Laplacian evolution equation with Neumann boundary conditions

Autores
Andreu, F.; Mazón, J.M.; Rossi, J.D.; Toledo, J.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Pures Appl. 2008;90(2):201-227
Materia
Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00217824_v90_n2_p201_Andreu

id BDUBAFCEN_51ed0863e4f5ae001081ea701373e271
oai_identifier_str paperaa:paper_00217824_v90_n2_p201_Andreu
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A nonlocal p-Laplacian evolution equation with Neumann boundary conditionsAndreu, F.Mazón, J.M.Rossi, J.D.Toledo, J.Neumann boundary conditionsNonlocal diffusionp-LaplacianTotal variation flowIn this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_AndreuJ. Math. Pures Appl. 2008;90(2):201-227reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:21Zpaperaa:paper_00217824_v90_n2_p201_AndreuInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.599Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
spellingShingle A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
Andreu, F.
Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
title_short A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_full A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_fullStr A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_full_unstemmed A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
title_sort A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
dc.creator.none.fl_str_mv Andreu, F.
Mazón, J.M.
Rossi, J.D.
Toledo, J.
author Andreu, F.
author_facet Andreu, F.
Mazón, J.M.
Rossi, J.D.
Toledo, J.
author_role author
author2 Mazón, J.M.
Rossi, J.D.
Toledo, J.
author2_role author
author
author
dc.subject.none.fl_str_mv Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
topic Neumann boundary conditions
Nonlocal diffusion
p-Laplacian
Total variation flow
dc.description.none.fl_txt_mv In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
url http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Pures Appl. 2008;90(2):201-227
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340700483485696
score 12.623145