Improvement of Besov regularity for solutions of the fractional Laplacian
- Autores
- Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina - Materia
-
Degenerate Elliptic Equations
Fractional Laplacian
Mean Value Formula
Besov Spaces
Gradient Estimates - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9379
Ver los metadatos del registro completo
| id |
CONICETDig_15a70ccf97e4f15a215fef28a4f349f4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9379 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Improvement of Besov regularity for solutions of the fractional LaplacianAimar, Hugo AlejandroBeltritti, GastónGomez, Ivana DanielaDegenerate Elliptic EquationsFractional LaplacianMean Value FormulaBesov SpacesGradient Estimateshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSpringer2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9379Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-2290176-4276enginfo:eu-repo/semantics/altIdentifier/doi//10.1007/s00365-014-9256-0info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00365-014-9256-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:56:19Zoai:ri.conicet.gov.ar:11336/9379instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:56:20.13CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| title |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| spellingShingle |
Improvement of Besov regularity for solutions of the fractional Laplacian Aimar, Hugo Alejandro Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
| title_short |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| title_full |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| title_fullStr |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| title_full_unstemmed |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| title_sort |
Improvement of Besov regularity for solutions of the fractional Laplacian |
| dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Beltritti, Gastón Gomez, Ivana Daniela |
| author |
Aimar, Hugo Alejandro |
| author_facet |
Aimar, Hugo Alejandro Beltritti, Gastón Gomez, Ivana Daniela |
| author_role |
author |
| author2 |
Beltritti, Gastón Gomez, Ivana Daniela |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
| topic |
Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina |
| description |
We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9379 Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-229 0176-4276 |
| url |
http://hdl.handle.net/11336/9379 |
| identifier_str_mv |
Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-229 0176-4276 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi//10.1007/s00365-014-9256-0 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00365-014-9256-0 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977347503882240 |
| score |
13.082534 |