Improvement of Besov regularity for solutions of the fractional Laplacian
- Autores
- Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina - Materia
-
Degenerate Elliptic Equations
Fractional Laplacian
Mean Value Formula
Besov Spaces
Gradient Estimates - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9379
Ver los metadatos del registro completo
id |
CONICETDig_15a70ccf97e4f15a215fef28a4f349f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9379 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improvement of Besov regularity for solutions of the fractional LaplacianAimar, Hugo AlejandroBeltritti, GastónGomez, Ivana DanielaDegenerate Elliptic EquationsFractional LaplacianMean Value FormulaBesov SpacesGradient Estimateshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaSpringer2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9379Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-2290176-4276enginfo:eu-repo/semantics/altIdentifier/doi//10.1007/s00365-014-9256-0info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00365-014-9256-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:41Zoai:ri.conicet.gov.ar:11336/9379instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:42.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improvement of Besov regularity for solutions of the fractional Laplacian |
title |
Improvement of Besov regularity for solutions of the fractional Laplacian |
spellingShingle |
Improvement of Besov regularity for solutions of the fractional Laplacian Aimar, Hugo Alejandro Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
title_short |
Improvement of Besov regularity for solutions of the fractional Laplacian |
title_full |
Improvement of Besov regularity for solutions of the fractional Laplacian |
title_fullStr |
Improvement of Besov regularity for solutions of the fractional Laplacian |
title_full_unstemmed |
Improvement of Besov regularity for solutions of the fractional Laplacian |
title_sort |
Improvement of Besov regularity for solutions of the fractional Laplacian |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Beltritti, Gastón Gomez, Ivana Daniela |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Beltritti, Gastón Gomez, Ivana Daniela |
author_role |
author |
author2 |
Beltritti, Gastón Gomez, Ivana Daniela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
topic |
Degenerate Elliptic Equations Fractional Laplacian Mean Value Formula Besov Spaces Gradient Estimates |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Beltritti, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina |
description |
We prove a mean value formula for weak solutions of div(|y| agradu) = 0 in Rn+1 = {(x, y) : x ∈ Rn, y ∈ R}, −1 < a < 1, and balls centered at points of the form (x, 0). We obtain an explicit nonlocal kernel for the mean value formula for solutions of (−)s f = 0 on a domain D of Rn. When D is Lipschitz, we prove a Besov type regularity improvement for the solutions of (−)s f = 0. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9379 Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-229 0176-4276 |
url |
http://hdl.handle.net/11336/9379 |
identifier_str_mv |
Aimar, Hugo Alejandro; Beltritti, Gastón; Gomez, Ivana Daniela; Improvement of Besov regularity for solutions of the fractional Laplacian; Springer; Constructive Approximation; 41; 2; 8-2014; 219-229 0176-4276 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi//10.1007/s00365-014-9256-0 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00365-014-9256-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613637890637824 |
score |
13.070432 |