The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
- Autores
- Pérez-Llanos, M.; Rossi, J.D.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2010;363(2):502-511
- Materia
-
Eigenvalue problems
p (x)-Laplacian
∞-Laplacian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v363_n2_p502_PerezLlanos
Ver los metadatos del registro completo
| id |
BDUBAFCEN_9c8b7990599600befc3f151ab80c4888 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v363_n2_p502_PerezLlanos |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞Pérez-Llanos, M.Rossi, J.D.Eigenvalue problemsp (x)-Laplacian∞-LaplacianIn this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanosJ. Math. Anal. Appl. 2010;363(2):502-511reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:47Zpaperaa:paper_0022247X_v363_n2_p502_PerezLlanosInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:48.562Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| title |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| spellingShingle |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ Pérez-Llanos, M. Eigenvalue problems p (x)-Laplacian ∞-Laplacian |
| title_short |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| title_full |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| title_fullStr |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| title_full_unstemmed |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| title_sort |
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ |
| dc.creator.none.fl_str_mv |
Pérez-Llanos, M. Rossi, J.D. |
| author |
Pérez-Llanos, M. |
| author_facet |
Pérez-Llanos, M. Rossi, J.D. |
| author_role |
author |
| author2 |
Rossi, J.D. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Eigenvalue problems p (x)-Laplacian ∞-Laplacian |
| topic |
Eigenvalue problems p (x)-Laplacian ∞-Laplacian |
| dc.description.none.fl_txt_mv |
In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanos |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanos |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2010;363(2):502-511 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046094455406592 |
| score |
13.082534 |