Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning

Autores
Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
BAYESIAN INFERENCE
EXPERIMENTAL DESIGN
FED-BATCH FERMENTATION
MODELING FOR OPTIMIZATION
RUN-TO-RUN OPTIMIZATION
SENSITIVITY ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6912

id CONICETDig_bdcb839ca580e18a699c2269e7dff1bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/6912
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learningMartinez, Ernesto CarlosCristaldi, Mariano DanielGrau, Ricardo José AntonioBAYESIAN INFERENCEEXPERIMENTAL DESIGNFED-BATCH FERMENTATIONMODELING FOR OPTIMIZATIONRUN-TO-RUN OPTIMIZATIONSENSITIVITY ANALYSIShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaPergamon-Elsevier Science Ltd2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6912Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-490098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002888info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2012.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:02Zoai:ri.conicet.gov.ar:11336/6912instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:03.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
title Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
spellingShingle Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
Martinez, Ernesto Carlos
BAYESIAN INFERENCE
EXPERIMENTAL DESIGN
FED-BATCH FERMENTATION
MODELING FOR OPTIMIZATION
RUN-TO-RUN OPTIMIZATION
SENSITIVITY ANALYSIS
title_short Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
title_full Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
title_fullStr Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
title_full_unstemmed Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
title_sort Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
dc.creator.none.fl_str_mv Martinez, Ernesto Carlos
Cristaldi, Mariano Daniel
Grau, Ricardo José Antonio
author Martinez, Ernesto Carlos
author_facet Martinez, Ernesto Carlos
Cristaldi, Mariano Daniel
Grau, Ricardo José Antonio
author_role author
author2 Cristaldi, Mariano Daniel
Grau, Ricardo José Antonio
author2_role author
author
dc.subject.none.fl_str_mv BAYESIAN INFERENCE
EXPERIMENTAL DESIGN
FED-BATCH FERMENTATION
MODELING FOR OPTIMIZATION
RUN-TO-RUN OPTIMIZATION
SENSITIVITY ANALYSIS
topic BAYESIAN INFERENCE
EXPERIMENTAL DESIGN
FED-BATCH FERMENTATION
MODELING FOR OPTIMIZATION
RUN-TO-RUN OPTIMIZATION
SENSITIVITY ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6912
Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-49
0098-1354
url http://hdl.handle.net/11336/6912
identifier_str_mv Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-49
0098-1354
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002888
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2012.09.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613494378332160
score 13.070432