Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning
- Autores
- Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
BAYESIAN INFERENCE
EXPERIMENTAL DESIGN
FED-BATCH FERMENTATION
MODELING FOR OPTIMIZATION
RUN-TO-RUN OPTIMIZATION
SENSITIVITY ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6912
Ver los metadatos del registro completo
id |
CONICETDig_bdcb839ca580e18a699c2269e7dff1bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6912 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learningMartinez, Ernesto CarlosCristaldi, Mariano DanielGrau, Ricardo José AntonioBAYESIAN INFERENCEEXPERIMENTAL DESIGNFED-BATCH FERMENTATIONMODELING FOR OPTIMIZATIONRUN-TO-RUN OPTIMIZATIONSENSITIVITY ANALYSIShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters.Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaPergamon-Elsevier Science Ltd2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6912Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-490098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002888info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2012.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:02Zoai:ri.conicet.gov.ar:11336/6912instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:03.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
title |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
spellingShingle |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning Martinez, Ernesto Carlos BAYESIAN INFERENCE EXPERIMENTAL DESIGN FED-BATCH FERMENTATION MODELING FOR OPTIMIZATION RUN-TO-RUN OPTIMIZATION SENSITIVITY ANALYSIS |
title_short |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
title_full |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
title_fullStr |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
title_full_unstemmed |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
title_sort |
Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning |
dc.creator.none.fl_str_mv |
Martinez, Ernesto Carlos Cristaldi, Mariano Daniel Grau, Ricardo José Antonio |
author |
Martinez, Ernesto Carlos |
author_facet |
Martinez, Ernesto Carlos Cristaldi, Mariano Daniel Grau, Ricardo José Antonio |
author_role |
author |
author2 |
Cristaldi, Mariano Daniel Grau, Ricardo José Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BAYESIAN INFERENCE EXPERIMENTAL DESIGN FED-BATCH FERMENTATION MODELING FOR OPTIMIZATION RUN-TO-RUN OPTIMIZATION SENSITIVITY ANALYSIS |
topic |
BAYESIAN INFERENCE EXPERIMENTAL DESIGN FED-BATCH FERMENTATION MODELING FOR OPTIMIZATION RUN-TO-RUN OPTIMIZATION SENSITIVITY ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters. Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Due to the complexity of metabolic regulation, first-principles models of bioreactor dynamics typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates imperfect models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information and performance. The proposed Bayesian decision-theoretic approach resorts to probabilistic tendency models that explicitly characterize their levels of confidence. Bootstrapping of parameter distributions is used to represent parametric uncertainty as histograms. The Bajpai & Reuss bioreactor model for penicillin production validated with industrial data is used as a representative case study. Run-to-run convergence to an improved policy is fast despite significant modeling errors as long as data are used to revise iteratively posterior distributions of the most influencing model parameters. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6912 Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-49 0098-1354 |
url |
http://hdl.handle.net/11336/6912 |
identifier_str_mv |
Martinez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 49; 1-2013; 37-49 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135412002888 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2012.09.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613494378332160 |
score |
13.070432 |