Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study
- Autores
- Luna, Martín Francisco; Martinez, Ernesto Carlos
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Variability of the composition and properties of raw materials used for biodiesel production may cause a loss of productivity, since the same operating conditions give rise to different yields for alternative feedstock sources. The capability to re-optimize the process when the raw materials change may lead to a significant improvement in productivity. For yield optimization, first-principles models of a biodiesel reactor have limited prediction capabilities due to the complex kinetics involving transesterifications and saponifications reactions, which demands active learning of relevant data through optimal design of experiments. In this work, a Bayesian approach for integrating experimentation with imperfect models is proposed to optimize biodiesel production on a run-to-run basis. Parameter distributions in a probabilistic tendency model for the transesterification of triglycerides are re-estimated using data from a sequence of experiments designed to guide policy improvement. Global sensitivity analysis is used to formulate the optimal sampling strategy in each dynamic experiment as an optimization problem. Results obtained highlight that, even when there are significant errors in the tendency model structure and reduced information content in samples, a significant increase in biodiesel production can be achieved after a handful of runs.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina - Materia
-
Modeling for Optimization
Biodiesel Production
Tendency Modeling
Optimal Experimental Design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6892
Ver los metadatos del registro completo
id |
CONICETDig_aaeb5a8083bb7dc562863d98bcc0a2f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6892 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation studyLuna, Martín FranciscoMartinez, Ernesto CarlosModeling for OptimizationBiodiesel ProductionTendency ModelingOptimal Experimental Designhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Variability of the composition and properties of raw materials used for biodiesel production may cause a loss of productivity, since the same operating conditions give rise to different yields for alternative feedstock sources. The capability to re-optimize the process when the raw materials change may lead to a significant improvement in productivity. For yield optimization, first-principles models of a biodiesel reactor have limited prediction capabilities due to the complex kinetics involving transesterifications and saponifications reactions, which demands active learning of relevant data through optimal design of experiments. In this work, a Bayesian approach for integrating experimentation with imperfect models is proposed to optimize biodiesel production on a run-to-run basis. Parameter distributions in a probabilistic tendency model for the transesterification of triglycerides are re-estimated using data from a sequence of experiments designed to guide policy improvement. Global sensitivity analysis is used to formulate the optimal sampling strategy in each dynamic experiment as an optimization problem. Results obtained highlight that, even when there are significant errors in the tendency model structure and reduced information content in samples, a significant increase in biodiesel production can be achieved after a handful of runs.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaWiley2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6892Luna, Martín Francisco; Martinez, Ernesto Carlos; Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study; Wiley; The Canadian Journal Of Chemical Engineering; 93; 9; 9-2015; 1613-16230008-4034enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cjce.22249/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1002/cjce.22249info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:19Zoai:ri.conicet.gov.ar:11336/6892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:19.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
title |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
spellingShingle |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study Luna, Martín Francisco Modeling for Optimization Biodiesel Production Tendency Modeling Optimal Experimental Design |
title_short |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
title_full |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
title_fullStr |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
title_full_unstemmed |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
title_sort |
Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study |
dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author |
Luna, Martín Francisco |
author_facet |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author_role |
author |
author2 |
Martinez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Modeling for Optimization Biodiesel Production Tendency Modeling Optimal Experimental Design |
topic |
Modeling for Optimization Biodiesel Production Tendency Modeling Optimal Experimental Design |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Variability of the composition and properties of raw materials used for biodiesel production may cause a loss of productivity, since the same operating conditions give rise to different yields for alternative feedstock sources. The capability to re-optimize the process when the raw materials change may lead to a significant improvement in productivity. For yield optimization, first-principles models of a biodiesel reactor have limited prediction capabilities due to the complex kinetics involving transesterifications and saponifications reactions, which demands active learning of relevant data through optimal design of experiments. In this work, a Bayesian approach for integrating experimentation with imperfect models is proposed to optimize biodiesel production on a run-to-run basis. Parameter distributions in a probabilistic tendency model for the transesterification of triglycerides are re-estimated using data from a sequence of experiments designed to guide policy improvement. Global sensitivity analysis is used to formulate the optimal sampling strategy in each dynamic experiment as an optimization problem. Results obtained highlight that, even when there are significant errors in the tendency model structure and reduced information content in samples, a significant increase in biodiesel production can be achieved after a handful of runs. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina |
description |
Variability of the composition and properties of raw materials used for biodiesel production may cause a loss of productivity, since the same operating conditions give rise to different yields for alternative feedstock sources. The capability to re-optimize the process when the raw materials change may lead to a significant improvement in productivity. For yield optimization, first-principles models of a biodiesel reactor have limited prediction capabilities due to the complex kinetics involving transesterifications and saponifications reactions, which demands active learning of relevant data through optimal design of experiments. In this work, a Bayesian approach for integrating experimentation with imperfect models is proposed to optimize biodiesel production on a run-to-run basis. Parameter distributions in a probabilistic tendency model for the transesterification of triglycerides are re-estimated using data from a sequence of experiments designed to guide policy improvement. Global sensitivity analysis is used to formulate the optimal sampling strategy in each dynamic experiment as an optimization problem. Results obtained highlight that, even when there are significant errors in the tendency model structure and reduced information content in samples, a significant increase in biodiesel production can be achieved after a handful of runs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6892 Luna, Martín Francisco; Martinez, Ernesto Carlos; Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study; Wiley; The Canadian Journal Of Chemical Engineering; 93; 9; 9-2015; 1613-1623 0008-4034 |
url |
http://hdl.handle.net/11336/6892 |
identifier_str_mv |
Luna, Martín Francisco; Martinez, Ernesto Carlos; Run-to-run optimization of biodiesel production using probabilistic tendency models: A simulation study; Wiley; The Canadian Journal Of Chemical Engineering; 93; 9; 9-2015; 1613-1623 0008-4034 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cjce.22249/abstract info:eu-repo/semantics/altIdentifier/doi/10.1002/cjce.22249 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981228994625536 |
score |
12.48226 |