Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference
- Autores
- Echeveste, Rodrigo Sebastián; Aitchison, Laurence; Hennequin, Guillaume; Lengyel, Máté
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory?inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of recordings from awake monkeys. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function?fast sampling-based inference?and predict further properties of these motifs that can be tested in future experiments.
Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Aitchison, Laurence. University of Cambridge; Reino Unido
Fil: Hennequin, Guillaume. University of Cambridge; Estados Unidos
Fil: Lengyel, Máté. University of Cambridge; Reino Unido - Materia
-
Neural Networks
Cortical Dynamics
Bayesian Inference
Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114008
Ver los metadatos del registro completo
id |
CONICETDig_581486b4d620ff3e58c0cf35cd912e42 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114008 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inferenceEcheveste, Rodrigo SebastiánAitchison, LaurenceHennequin, GuillaumeLengyel, MátéNeural NetworksCortical DynamicsBayesian InferenceOptimizationhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory?inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of recordings from awake monkeys. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function?fast sampling-based inference?and predict further properties of these motifs that can be tested in future experiments.Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Aitchison, Laurence. University of Cambridge; Reino UnidoFil: Hennequin, Guillaume. University of Cambridge; Estados UnidosFil: Lengyel, Máté. University of Cambridge; Reino UnidoNature Publishing Group2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114008Echeveste, Rodrigo Sebastián; Aitchison, Laurence; Hennequin, Guillaume; Lengyel, Máté; Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference; Nature Publishing Group; Nature Neuroscience.; 23; 9; 8-2020; 1138-11491097-6256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41593-020-0671-1info:eu-repo/semantics/altIdentifier/doi/10.1038/s41593-020-0671-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:41Zoai:ri.conicet.gov.ar:11336/114008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:42.171CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
title |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
spellingShingle |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference Echeveste, Rodrigo Sebastián Neural Networks Cortical Dynamics Bayesian Inference Optimization |
title_short |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
title_full |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
title_fullStr |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
title_full_unstemmed |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
title_sort |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference |
dc.creator.none.fl_str_mv |
Echeveste, Rodrigo Sebastián Aitchison, Laurence Hennequin, Guillaume Lengyel, Máté |
author |
Echeveste, Rodrigo Sebastián |
author_facet |
Echeveste, Rodrigo Sebastián Aitchison, Laurence Hennequin, Guillaume Lengyel, Máté |
author_role |
author |
author2 |
Aitchison, Laurence Hennequin, Guillaume Lengyel, Máté |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Neural Networks Cortical Dynamics Bayesian Inference Optimization |
topic |
Neural Networks Cortical Dynamics Bayesian Inference Optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory?inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of recordings from awake monkeys. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function?fast sampling-based inference?and predict further properties of these motifs that can be tested in future experiments. Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Aitchison, Laurence. University of Cambridge; Reino Unido Fil: Hennequin, Guillaume. University of Cambridge; Estados Unidos Fil: Lengyel, Máté. University of Cambridge; Reino Unido |
description |
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory?inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of recordings from awake monkeys. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function?fast sampling-based inference?and predict further properties of these motifs that can be tested in future experiments. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114008 Echeveste, Rodrigo Sebastián; Aitchison, Laurence; Hennequin, Guillaume; Lengyel, Máté; Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference; Nature Publishing Group; Nature Neuroscience.; 23; 9; 8-2020; 1138-1149 1097-6256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/114008 |
identifier_str_mv |
Echeveste, Rodrigo Sebastián; Aitchison, Laurence; Hennequin, Guillaume; Lengyel, Máté; Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference; Nature Publishing Group; Nature Neuroscience.; 23; 9; 8-2020; 1138-1149 1097-6256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41593-020-0671-1 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41593-020-0671-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614448388505600 |
score |
13.070432 |