Batch process modeling for optimization using reinforcement learning
- Autores
- Martínez, Ernesto Carlos
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
BATCH PROCESS
MODELING FOR OPTIMIZATION
REACTION KINETICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98760
Ver los metadatos del registro completo
id |
CONICETDig_c3c05bafb1c9f013c04baca786dab209 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98760 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Batch process modeling for optimization using reinforcement learningMartínez, Ernesto CarlosBATCH PROCESSMODELING FOR OPTIMIZATIONREACTION KINETICShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2000-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98760Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-11930098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00354-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:53Zoai:ri.conicet.gov.ar:11336/98760instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:54.085CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Batch process modeling for optimization using reinforcement learning |
title |
Batch process modeling for optimization using reinforcement learning |
spellingShingle |
Batch process modeling for optimization using reinforcement learning Martínez, Ernesto Carlos BATCH PROCESS MODELING FOR OPTIMIZATION REACTION KINETICS |
title_short |
Batch process modeling for optimization using reinforcement learning |
title_full |
Batch process modeling for optimization using reinforcement learning |
title_fullStr |
Batch process modeling for optimization using reinforcement learning |
title_full_unstemmed |
Batch process modeling for optimization using reinforcement learning |
title_sort |
Batch process modeling for optimization using reinforcement learning |
dc.creator.none.fl_str_mv |
Martínez, Ernesto Carlos |
author |
Martínez, Ernesto Carlos |
author_facet |
Martínez, Ernesto Carlos |
author_role |
author |
dc.subject.none.fl_str_mv |
BATCH PROCESS MODELING FOR OPTIMIZATION REACTION KINETICS |
topic |
BATCH PROCESS MODELING FOR OPTIMIZATION REACTION KINETICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors. Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98760 Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-1193 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98760 |
identifier_str_mv |
Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-1193 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00354-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613682890276864 |
score |
13.070432 |