Batch process modeling for optimization using reinforcement learning

Autores
Martínez, Ernesto Carlos
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
BATCH PROCESS
MODELING FOR OPTIMIZATION
REACTION KINETICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98760

id CONICETDig_c3c05bafb1c9f013c04baca786dab209
oai_identifier_str oai:ri.conicet.gov.ar:11336/98760
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Batch process modeling for optimization using reinforcement learningMartínez, Ernesto CarlosBATCH PROCESSMODELING FOR OPTIMIZATIONREACTION KINETICShttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2000-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98760Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-11930098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00354-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:53Zoai:ri.conicet.gov.ar:11336/98760instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:54.085CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Batch process modeling for optimization using reinforcement learning
title Batch process modeling for optimization using reinforcement learning
spellingShingle Batch process modeling for optimization using reinforcement learning
Martínez, Ernesto Carlos
BATCH PROCESS
MODELING FOR OPTIMIZATION
REACTION KINETICS
title_short Batch process modeling for optimization using reinforcement learning
title_full Batch process modeling for optimization using reinforcement learning
title_fullStr Batch process modeling for optimization using reinforcement learning
title_full_unstemmed Batch process modeling for optimization using reinforcement learning
title_sort Batch process modeling for optimization using reinforcement learning
dc.creator.none.fl_str_mv Martínez, Ernesto Carlos
author Martínez, Ernesto Carlos
author_facet Martínez, Ernesto Carlos
author_role author
dc.subject.none.fl_str_mv BATCH PROCESS
MODELING FOR OPTIMIZATION
REACTION KINETICS
topic BATCH PROCESS
MODELING FOR OPTIMIZATION
REACTION KINETICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end- use properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural modeling errors.
publishDate 2000
dc.date.none.fl_str_mv 2000-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98760
Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-1193
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98760
identifier_str_mv Martínez, Ernesto Carlos; Batch process modeling for optimization using reinforcement learning; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 2-7; 7-2000; 1187-1193
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00354-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613682890276864
score 13.070432