A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models
- Autores
- Luna, Martín Francisco; Martinez, Ernesto Carlos
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Run-To-Run Optimization
Bioprocess
Tendency Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22438
Ver los metadatos del registro completo
id |
CONICETDig_b2c78bc849672c044f5fd7a9dbd755a6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22438 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency ModelsLuna, Martín FranciscoMartinez, Ernesto CarlosRun-To-Run OptimizationBioprocessTendency Modelshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaAmerican Chemical Society2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22438Luna, Martín Francisco; Martinez, Ernesto Carlos; A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 8-2014; 17252-172660888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie500453einfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie500453einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:35Zoai:ri.conicet.gov.ar:11336/22438instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:35.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
title |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
spellingShingle |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models Luna, Martín Francisco Run-To-Run Optimization Bioprocess Tendency Models |
title_short |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
title_full |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
title_fullStr |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
title_full_unstemmed |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
title_sort |
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models |
dc.creator.none.fl_str_mv |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author |
Luna, Martín Francisco |
author_facet |
Luna, Martín Francisco Martinez, Ernesto Carlos |
author_role |
author |
author2 |
Martinez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Run-To-Run Optimization Bioprocess Tendency Models |
topic |
Run-To-Run Optimization Bioprocess Tendency Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22438 Luna, Martín Francisco; Martinez, Ernesto Carlos; A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 8-2014; 17252-17266 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22438 |
identifier_str_mv |
Luna, Martín Francisco; Martinez, Ernesto Carlos; A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 8-2014; 17252-17266 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie500453e info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie500453e |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980595320225792 |
score |
12.993085 |