Biclique immersions in graphs with independence number 2

Autores
Botler, Fábio; Jiménez, Andrea; Lintzmayer, Carla Negri; Pastine, Adrián Gabriel; Quiroz, Daniel; Sambinelli, Maycon
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.
Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Jiménez, Andrea. Universidad de Valparaíso; Chile
Fil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; Brasil
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Quiroz, Daniel. Universidad de Valparaíso; Chile
Fil: Sambinelli, Maycon. Universidade Federal Do Abc; Brasil
European Conference on Combinatorics, Graph Theory and Applications 2023
Praga
República Checa
Computer Science Institute of Charles University
Materia
BICLIQUE IMMERSIONS
INDEPENDENCE NUMBER 2
IMMERSIONS
MINORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235061

id CONICETDig_bbebd2c405b19e3af560e96171ccc9db
oai_identifier_str oai:ri.conicet.gov.ar:11336/235061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biclique immersions in graphs with independence number 2Botler, FábioJiménez, AndreaLintzmayer, Carla NegriPastine, Adrián GabrielQuiroz, DanielSambinelli, MayconBICLIQUE IMMERSIONSINDEPENDENCE NUMBER 2IMMERSIONSMINORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; BrasilFil: Jiménez, Andrea. Universidad de Valparaíso; ChileFil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; BrasilFil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Quiroz, Daniel. Universidad de Valparaíso; ChileFil: Sambinelli, Maycon. Universidade Federal Do Abc; BrasilEuropean Conference on Combinatorics, Graph Theory and Applications 2023PragaRepública ChecaComputer Science Institute of Charles UniversityMasaryk University Press2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235061Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-1772788-3116CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.muni.cz/eurocomb/article/view/35558info:eu-repo/semantics/altIdentifier/doi/10.5817/CZ.MUNI.EUROCOMB23-024info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2303.06483Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:57Zoai:ri.conicet.gov.ar:11336/235061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:58.24CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biclique immersions in graphs with independence number 2
title Biclique immersions in graphs with independence number 2
spellingShingle Biclique immersions in graphs with independence number 2
Botler, Fábio
BICLIQUE IMMERSIONS
INDEPENDENCE NUMBER 2
IMMERSIONS
MINORS
title_short Biclique immersions in graphs with independence number 2
title_full Biclique immersions in graphs with independence number 2
title_fullStr Biclique immersions in graphs with independence number 2
title_full_unstemmed Biclique immersions in graphs with independence number 2
title_sort Biclique immersions in graphs with independence number 2
dc.creator.none.fl_str_mv Botler, Fábio
Jiménez, Andrea
Lintzmayer, Carla Negri
Pastine, Adrián Gabriel
Quiroz, Daniel
Sambinelli, Maycon
author Botler, Fábio
author_facet Botler, Fábio
Jiménez, Andrea
Lintzmayer, Carla Negri
Pastine, Adrián Gabriel
Quiroz, Daniel
Sambinelli, Maycon
author_role author
author2 Jiménez, Andrea
Lintzmayer, Carla Negri
Pastine, Adrián Gabriel
Quiroz, Daniel
Sambinelli, Maycon
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BICLIQUE IMMERSIONS
INDEPENDENCE NUMBER 2
IMMERSIONS
MINORS
topic BICLIQUE IMMERSIONS
INDEPENDENCE NUMBER 2
IMMERSIONS
MINORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.
Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Jiménez, Andrea. Universidad de Valparaíso; Chile
Fil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; Brasil
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Quiroz, Daniel. Universidad de Valparaíso; Chile
Fil: Sambinelli, Maycon. Universidade Federal Do Abc; Brasil
European Conference on Combinatorics, Graph Theory and Applications 2023
Praga
República Checa
Computer Science Institute of Charles University
description The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235061
Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-177
2788-3116
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235061
identifier_str_mv Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-177
2788-3116
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.muni.cz/eurocomb/article/view/35558
info:eu-repo/semantics/altIdentifier/doi/10.5817/CZ.MUNI.EUROCOMB23-024
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2303.06483
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Masaryk University Press
publisher.none.fl_str_mv Masaryk University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614451783794688
score 13.070432