Biclique immersions in graphs with independence number 2
- Autores
- Botler, Fábio; Jiménez, Andrea; Lintzmayer, Carla Negri; Pastine, Adrián Gabriel; Quiroz, Daniel; Sambinelli, Maycon
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.
Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Jiménez, Andrea. Universidad de Valparaíso; Chile
Fil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; Brasil
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Quiroz, Daniel. Universidad de Valparaíso; Chile
Fil: Sambinelli, Maycon. Universidade Federal Do Abc; Brasil
European Conference on Combinatorics, Graph Theory and Applications 2023
Praga
República Checa
Computer Science Institute of Charles University - Materia
-
BICLIQUE IMMERSIONS
INDEPENDENCE NUMBER 2
IMMERSIONS
MINORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235061
Ver los metadatos del registro completo
| id |
CONICETDig_bbebd2c405b19e3af560e96171ccc9db |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235061 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Biclique immersions in graphs with independence number 2Botler, FábioJiménez, AndreaLintzmayer, Carla NegriPastine, Adrián GabrielQuiroz, DanielSambinelli, MayconBICLIQUE IMMERSIONSINDEPENDENCE NUMBER 2IMMERSIONSMINORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; BrasilFil: Jiménez, Andrea. Universidad de Valparaíso; ChileFil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; BrasilFil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Quiroz, Daniel. Universidad de Valparaíso; ChileFil: Sambinelli, Maycon. Universidade Federal Do Abc; BrasilEuropean Conference on Combinatorics, Graph Theory and Applications 2023PragaRepública ChecaComputer Science Institute of Charles UniversityMasaryk University Press2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235061Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-1772788-3116CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.muni.cz/eurocomb/article/view/35558info:eu-repo/semantics/altIdentifier/doi/10.5817/CZ.MUNI.EUROCOMB23-024info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2303.06483Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:48:50Zoai:ri.conicet.gov.ar:11336/235061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:48:50.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Biclique immersions in graphs with independence number 2 |
| title |
Biclique immersions in graphs with independence number 2 |
| spellingShingle |
Biclique immersions in graphs with independence number 2 Botler, Fábio BICLIQUE IMMERSIONS INDEPENDENCE NUMBER 2 IMMERSIONS MINORS |
| title_short |
Biclique immersions in graphs with independence number 2 |
| title_full |
Biclique immersions in graphs with independence number 2 |
| title_fullStr |
Biclique immersions in graphs with independence number 2 |
| title_full_unstemmed |
Biclique immersions in graphs with independence number 2 |
| title_sort |
Biclique immersions in graphs with independence number 2 |
| dc.creator.none.fl_str_mv |
Botler, Fábio Jiménez, Andrea Lintzmayer, Carla Negri Pastine, Adrián Gabriel Quiroz, Daniel Sambinelli, Maycon |
| author |
Botler, Fábio |
| author_facet |
Botler, Fábio Jiménez, Andrea Lintzmayer, Carla Negri Pastine, Adrián Gabriel Quiroz, Daniel Sambinelli, Maycon |
| author_role |
author |
| author2 |
Jiménez, Andrea Lintzmayer, Carla Negri Pastine, Adrián Gabriel Quiroz, Daniel Sambinelli, Maycon |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
BICLIQUE IMMERSIONS INDEPENDENCE NUMBER 2 IMMERSIONS MINORS |
| topic |
BICLIQUE IMMERSIONS INDEPENDENCE NUMBER 2 IMMERSIONS MINORS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion. Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; Brasil Fil: Jiménez, Andrea. Universidad de Valparaíso; Chile Fil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; Brasil Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Quiroz, Daniel. Universidad de Valparaíso; Chile Fil: Sambinelli, Maycon. Universidade Federal Do Abc; Brasil European Conference on Combinatorics, Graph Theory and Applications 2023 Praga República Checa Computer Science Institute of Charles University |
| description |
The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| status_str |
publishedVersion |
| format |
conferenceObject |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235061 Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-177 2788-3116 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/235061 |
| identifier_str_mv |
Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-177 2788-3116 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.muni.cz/eurocomb/article/view/35558 info:eu-repo/semantics/altIdentifier/doi/10.5817/CZ.MUNI.EUROCOMB23-024 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2303.06483 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.coverage.none.fl_str_mv |
Internacional |
| dc.publisher.none.fl_str_mv |
Masaryk University Press |
| publisher.none.fl_str_mv |
Masaryk University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427555990175744 |
| score |
13.10058 |