Tight lower bounds on the number of bicliques in false-twin-free graphs

Autores
Groshaus, Marina Esther; Montero, Leandro Pedro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Materia
Bicliques
False-Twin-Free Graphs
Lower Bounds
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59781

id CONICETDig_a4e7a8e2c5e3b96f0d897f7dd3d689e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/59781
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tight lower bounds on the number of bicliques in false-twin-free graphsGroshaus, Marina EstherMontero, Leandro PedroBicliquesFalse-Twin-Free GraphsLower Boundshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Science2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59781Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-840304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397516301633info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2016.05.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:35Zoai:ri.conicet.gov.ar:11336/59781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:35.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tight lower bounds on the number of bicliques in false-twin-free graphs
title Tight lower bounds on the number of bicliques in false-twin-free graphs
spellingShingle Tight lower bounds on the number of bicliques in false-twin-free graphs
Groshaus, Marina Esther
Bicliques
False-Twin-Free Graphs
Lower Bounds
title_short Tight lower bounds on the number of bicliques in false-twin-free graphs
title_full Tight lower bounds on the number of bicliques in false-twin-free graphs
title_fullStr Tight lower bounds on the number of bicliques in false-twin-free graphs
title_full_unstemmed Tight lower bounds on the number of bicliques in false-twin-free graphs
title_sort Tight lower bounds on the number of bicliques in false-twin-free graphs
dc.creator.none.fl_str_mv Groshaus, Marina Esther
Montero, Leandro Pedro
author Groshaus, Marina Esther
author_facet Groshaus, Marina Esther
Montero, Leandro Pedro
author_role author
author2 Montero, Leandro Pedro
author2_role author
dc.subject.none.fl_str_mv Bicliques
False-Twin-Free Graphs
Lower Bounds
topic Bicliques
False-Twin-Free Graphs
Lower Bounds
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
description A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59781
Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-84
0304-3975
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59781
identifier_str_mv Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-84
0304-3975
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397516301633
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2016.05.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270008422432768
score 13.13397