Tight lower bounds on the number of bicliques in false-twin-free graphs
- Autores
- Groshaus, Marina Esther; Montero, Leandro Pedro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
Bicliques
False-Twin-Free Graphs
Lower Bounds - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59781
Ver los metadatos del registro completo
id |
CONICETDig_a4e7a8e2c5e3b96f0d897f7dd3d689e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59781 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tight lower bounds on the number of bicliques in false-twin-free graphsGroshaus, Marina EstherMontero, Leandro PedroBicliquesFalse-Twin-Free GraphsLower Boundshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Science2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59781Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-840304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397516301633info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2016.05.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:35Zoai:ri.conicet.gov.ar:11336/59781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:35.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
title |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
spellingShingle |
Tight lower bounds on the number of bicliques in false-twin-free graphs Groshaus, Marina Esther Bicliques False-Twin-Free Graphs Lower Bounds |
title_short |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
title_full |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
title_fullStr |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
title_full_unstemmed |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
title_sort |
Tight lower bounds on the number of bicliques in false-twin-free graphs |
dc.creator.none.fl_str_mv |
Groshaus, Marina Esther Montero, Leandro Pedro |
author |
Groshaus, Marina Esther |
author_facet |
Groshaus, Marina Esther Montero, Leandro Pedro |
author_role |
author |
author2 |
Montero, Leandro Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bicliques False-Twin-Free Graphs Lower Bounds |
topic |
Bicliques False-Twin-Free Graphs Lower Bounds |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs. Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Montero, Leandro Pedro. Université Paris Sud; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
A biclique is a maximal bipartite complete induced subgraph of G. Bicliques have been studied in the last years motivated by the large number of applications. In particular, enumeration of the maximal bicliques has been of interest in data analysis. Associated with this issue, bounds on the maximum number of bicliques were given. In this paper we study bounds on the minimun number of bicliques of a graph. Since adding false-twin vertices to G does not change the number of bicliques, we restrict to false-twin-free graphs. We give a tight lower bound on the minimum number bicliques for a subclass of {C4,false-twin}-free graphs and for the class of {K3,false-twin}-free graphs. Finally we discuss the problem for general graphs. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59781 Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-84 0304-3975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59781 |
identifier_str_mv |
Groshaus, Marina Esther; Montero, Leandro Pedro; Tight lower bounds on the number of bicliques in false-twin-free graphs; Elsevier Science; Theoretical Computer Science; 636; 7-2016; 77-84 0304-3975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397516301633 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2016.05.027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270008422432768 |
score |
13.13397 |