Short geodesics of unitaries in the L2 metric
- Autores
- Andruchow, Esteban
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a type II_1 von Neumann algebra, τ a trace in M, and l^2 (M,τ) the GNS Hilbert space of τ. We regard the unitary group U_M as a subset of l^2 (M,τ), and characterize the shortest smooth curves of unitaries joining two fixed unitaries, in the L^2 metric. As a consequence of this we obtain that U_M, though a complete (metric) topological group, is not an embedded riemannian submanifold of l^2 (M,τ)
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
UNITARY GROUP
SHORT GEODESICS
INFINITE DIMENSIONAL RIEMANNIAN MANIFOLDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105166
Ver los metadatos del registro completo
| id |
CONICETDig_b0514b10cd19161c622cafc217b6d352 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105166 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Short geodesics of unitaries in the L2 metricAndruchow, EstebanUNITARY GROUPSHORT GEODESICSINFINITE DIMENSIONAL RIEMANNIAN MANIFOLDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a type II_1 von Neumann algebra, τ a trace in M, and l^2 (M,τ) the GNS Hilbert space of τ. We regard the unitary group U_M as a subset of l^2 (M,τ), and characterize the shortest smooth curves of unitaries joining two fixed unitaries, in the L^2 metric. As a consequence of this we obtain that U_M, though a complete (metric) topological group, is not an embedded riemannian submanifold of l^2 (M,τ)Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaCanadian Mathematical Soc2005-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105166Andruchow, Esteban; Short geodesics of unitaries in the L2 metric; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 48; 3; 9-2005; 340-3540008-4395CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2005-032-0info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/short-geodesics-of-unitaries-in-the-l-2-metric/2212CACF3B2E3C2024CD2C3C2A390833info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:53:08Zoai:ri.conicet.gov.ar:11336/105166instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:53:08.693CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Short geodesics of unitaries in the L2 metric |
| title |
Short geodesics of unitaries in the L2 metric |
| spellingShingle |
Short geodesics of unitaries in the L2 metric Andruchow, Esteban UNITARY GROUP SHORT GEODESICS INFINITE DIMENSIONAL RIEMANNIAN MANIFOLDS |
| title_short |
Short geodesics of unitaries in the L2 metric |
| title_full |
Short geodesics of unitaries in the L2 metric |
| title_fullStr |
Short geodesics of unitaries in the L2 metric |
| title_full_unstemmed |
Short geodesics of unitaries in the L2 metric |
| title_sort |
Short geodesics of unitaries in the L2 metric |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban |
| author_role |
author |
| dc.subject.none.fl_str_mv |
UNITARY GROUP SHORT GEODESICS INFINITE DIMENSIONAL RIEMANNIAN MANIFOLDS |
| topic |
UNITARY GROUP SHORT GEODESICS INFINITE DIMENSIONAL RIEMANNIAN MANIFOLDS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let M be a type II_1 von Neumann algebra, τ a trace in M, and l^2 (M,τ) the GNS Hilbert space of τ. We regard the unitary group U_M as a subset of l^2 (M,τ), and characterize the shortest smooth curves of unitaries joining two fixed unitaries, in the L^2 metric. As a consequence of this we obtain that U_M, though a complete (metric) topological group, is not an embedded riemannian submanifold of l^2 (M,τ) Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Let M be a type II_1 von Neumann algebra, τ a trace in M, and l^2 (M,τ) the GNS Hilbert space of τ. We regard the unitary group U_M as a subset of l^2 (M,τ), and characterize the shortest smooth curves of unitaries joining two fixed unitaries, in the L^2 metric. As a consequence of this we obtain that U_M, though a complete (metric) topological group, is not an embedded riemannian submanifold of l^2 (M,τ) |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105166 Andruchow, Esteban; Short geodesics of unitaries in the L2 metric; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 48; 3; 9-2005; 340-354 0008-4395 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/105166 |
| identifier_str_mv |
Andruchow, Esteban; Short geodesics of unitaries in the L2 metric; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 48; 3; 9-2005; 340-354 0008-4395 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2005-032-0 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/short-geodesics-of-unitaries-in-the-l-2-metric/2212CACF3B2E3C2024CD2C3C2A390833 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
| publisher.none.fl_str_mv |
Canadian Mathematical Soc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598208605847552 |
| score |
12.976206 |