Homogeneous geodesics in pseudo-Riemannian nilmanifolds
- Autores
- del Barco, Viviana Jorgelina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES
HOMOGENEOUS GEODESICS
PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52639
Ver los metadatos del registro completo
id |
CONICETDig_73a25f99e8544fa638e8bea73ead75c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52639 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homogeneous geodesics in pseudo-Riemannian nilmanifoldsdel Barco, Viviana JorgelinaHOMOGENEOUS PSEUDO-RIEMANNIAN SPACESHOMOGENEOUS GEODESICSPSEUDO-RIEMANNIAN NILPOTENT LIE GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaDe Gruyter2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/52639del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-181615-715X1615-7168CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2016.16.issue-2/advgeom-2016-0007/advgeom-2016-0007.xmlinfo:eu-repo/semantics/altIdentifier/doi/ 10.1515/advgeom-2016-0007info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.5939info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:34Zoai:ri.conicet.gov.ar:11336/52639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:34.556CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
title |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
spellingShingle |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds del Barco, Viviana Jorgelina HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES HOMOGENEOUS GEODESICS PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS |
title_short |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
title_full |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
title_fullStr |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
title_full_unstemmed |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
title_sort |
Homogeneous geodesics in pseudo-Riemannian nilmanifolds |
dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina |
author |
del Barco, Viviana Jorgelina |
author_facet |
del Barco, Viviana Jorgelina |
author_role |
author |
dc.subject.none.fl_str_mv |
HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES HOMOGENEOUS GEODESICS PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS |
topic |
HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES HOMOGENEOUS GEODESICS PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic. Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52639 del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-18 1615-715X 1615-7168 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52639 |
identifier_str_mv |
del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-18 1615-715X 1615-7168 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2016.16.issue-2/advgeom-2016-0007/advgeom-2016-0007.xml info:eu-repo/semantics/altIdentifier/doi/ 10.1515/advgeom-2016-0007 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.5939 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980780016402432 |
score |
12.993085 |