Homogeneous geodesics in pseudo-Riemannian nilmanifolds

Autores
del Barco, Viviana Jorgelina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES
HOMOGENEOUS GEODESICS
PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52639

id CONICETDig_73a25f99e8544fa638e8bea73ead75c8
oai_identifier_str oai:ri.conicet.gov.ar:11336/52639
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homogeneous geodesics in pseudo-Riemannian nilmanifoldsdel Barco, Viviana JorgelinaHOMOGENEOUS PSEUDO-RIEMANNIAN SPACESHOMOGENEOUS GEODESICSPSEUDO-RIEMANNIAN NILPOTENT LIE GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaDe Gruyter2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/52639del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-181615-715X1615-7168CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2016.16.issue-2/advgeom-2016-0007/advgeom-2016-0007.xmlinfo:eu-repo/semantics/altIdentifier/doi/ 10.1515/advgeom-2016-0007info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.5939info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:34Zoai:ri.conicet.gov.ar:11336/52639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:34.556CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homogeneous geodesics in pseudo-Riemannian nilmanifolds
title Homogeneous geodesics in pseudo-Riemannian nilmanifolds
spellingShingle Homogeneous geodesics in pseudo-Riemannian nilmanifolds
del Barco, Viviana Jorgelina
HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES
HOMOGENEOUS GEODESICS
PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS
title_short Homogeneous geodesics in pseudo-Riemannian nilmanifolds
title_full Homogeneous geodesics in pseudo-Riemannian nilmanifolds
title_fullStr Homogeneous geodesics in pseudo-Riemannian nilmanifolds
title_full_unstemmed Homogeneous geodesics in pseudo-Riemannian nilmanifolds
title_sort Homogeneous geodesics in pseudo-Riemannian nilmanifolds
dc.creator.none.fl_str_mv del Barco, Viviana Jorgelina
author del Barco, Viviana Jorgelina
author_facet del Barco, Viviana Jorgelina
author_role author
dc.subject.none.fl_str_mv HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES
HOMOGENEOUS GEODESICS
PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS
topic HOMOGENEOUS PSEUDO-RIEMANNIAN SPACES
HOMOGENEOUS GEODESICS
PSEUDO-RIEMANNIAN NILPOTENT LIE GROUPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description We study the geodesic orbit property for nilpotent Lie groups N when endowed with a pseudo-Riemannian left-invariant metric. We consider this property with respect to different groups acting by isometries. When N acts on itself by left-translations we show that it is a geodesic orbit space if and only if the metric is bi-invariant. Assuming N is 2-step nilpotent and with non-degenerate center we give algebraic conditions on the Lie algebra n of N in order to verify that every geodesic is the orbit of a one-parameter subgroup of N ⋊ Auto(N). In addition we present an example of an almost g.o. space such that for null homogeneous geodesics, the natural parameter of the orbit is not always the affine parameter of the geodesic.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52639
del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-18
1615-715X
1615-7168
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52639
identifier_str_mv del Barco, Viviana Jorgelina; Homogeneous geodesics in pseudo-Riemannian nilmanifolds; De Gruyter; Advances In Geometry; 16; 2; 4-2016; 1-18
1615-715X
1615-7168
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advg.2016.16.issue-2/advgeom-2016-0007/advgeom-2016-0007.xml
info:eu-repo/semantics/altIdentifier/doi/ 10.1515/advgeom-2016-0007
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.5939
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980780016402432
score 12.993085